context("exact UScrime")
library(parallel)
library(tictoc)
cores <- detectCores()
# modelprior = uniform
test_that("UScrime produces correct results BIC", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results BIC")
result <- blma(vy, mX, prior="BIC", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.7086661153970550,0.1906278707126815,0.9207138264989706,0.7253039423829655,
0.3701199526247380,0.1582273002726970,0.2705746685548234,0.6064309892368921,
0.3692402458531630,0.2192145020585733,0.5583788608712796,0.1738658933193491,
0.9992269387743786,0.9027057249464372,0.1763387397295991
), tolerance = 1e-8)
})
test_that("UScrime produces correct results ZE", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results ZE")
result <- blma(vy, mX, prior="ZE", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6551129989168902,0.2287509395743590,0.8691121295594134,0.6964900562039598,
0.4236469337382322,0.2017927025100451,0.3243432277162467,0.5691166496984528,
0.3580859703810375,0.2434951699745767,0.5019137481840252,0.2157295344341948,
0.9969490852909634,0.8492050249433519,0.2255266067521766
), tolerance = 1e-8)
})
test_that("UScrime produces correct results liang_g1", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results liang_g1")
result <- blma(vy, mX, prior="liang_g1", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6592570082818343,0.2551890195947963,0.8623073076292519,0.6920362397961507,
0.4460647456912883,0.2306155050885771,0.3455094697420374,0.5734193328978876,
0.3765879959676905,0.2706204512952343,0.5124771409697690,0.2445691137122302,
0.9950499664783635,0.8387376358181808,0.2549263051824415
), tolerance = 1e-8)
})
test_that("UScrime produces correct results liang_g2", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results liang_g2")
result <- blma(vy, mX, prior="liang_g2", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6592570082818349,0.2551890195947963,0.8623073076292518,0.6920362397961510,
0.4460647456912886,0.2306155050885771,0.3455094697420375,0.5734193328978877,
0.3765879959676907,0.2706204512952343,0.5124771409697698,0.2445691137122302,
0.9950499664783639,0.8387376358181811,0.2549263051824416
), tolerance = 1e-8)
})
test_that("UScrime produces correct results liang_g_n_appell", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results liang_g_n_appell")
result <- blma(vy, mX, prior="liang_g_n_appell", modelprior="uniform", cores=1)
toc()
expect_equal(result$vinclusion_prob, c(
0.6510317307247586,0.2291245644515895,0.8651014024703148,0.6951167568300936,
0.4252167906333386,0.2025875318978383,0.3258937597030980,0.5663482122162754,
0.3560815607057162,0.2429056433304466,0.4974513113404140,0.2163153102625932,
0.9966071300164177,0.8454731057912949,0.2265273203490445
), tolerance = 1e-8)
})
test_that("UScrime produces correct results liang_g_n_approx", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results liang_g_n_approx")
result <- blma(vy, mX, prior="liang_g_n_approx", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6572101998512460,0.2246852625428866,0.8724241652237846,0.6988559837509296,
0.4187705059074147,0.1972665987685162,0.3200139348087251,0.5707013245228147,
0.3570504620645473,0.2399912284225987,0.5038302968886970,0.2112239440381476,
0.9971640443211224,0.8531712185011106,0.2205035229588246
), tolerance = 1e-8)
})
test_that("UScrime produces correct results liang_g_n_quad", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results liang_g_n_quad")
result <- blma(vy, mX, prior="liang_g_n_quad", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6510319616402197,0.2291246515020669,0.8651016578499309,0.6951167646184457,
0.4252168286795515,0.2025876028333554,0.3258937799141847,0.5663483825834370,
0.3560816955345109,0.2429057369231485,0.4974515067645519,0.2163153896529443,
0.9966071426484949,0.8454733725259110,0.2265274029341707
), tolerance = 1e-8)
})
test_that("UScrime produces correct results robust_bayarri1", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results robust_bayarri1")
result <- blma(vy, mX, prior="robust_bayarri1", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6473883232855026,0.2450615600524966,0.8559561722433557,0.6902233614648986,
0.4408054425401610,0.2203974917215597,0.3408084056726517,0.5647124777936052,
0.3635295995251649,0.2577731178654963,0.4966009918811810,0.2339193088407784,
0.9954515035508796,0.8345346895344056,0.2451791177061960
), tolerance = 1e-8)
})
test_that("UScrime produces correct results robust_bayarri2", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results robust_bayarri2")
result <- blma(vy, mX, prior="robust_bayarri2", modelprior="uniform", cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.6473659645368532,0.2450935725931694,0.8559277873673219,0.6902103956460465,
0.4408397852569301,0.2204342991741803,0.3408415449185910,0.5647004484926239,
0.3635349998539846,0.2577975787131784,0.4965810378824649,0.2339548960414573,
0.9954498578038506,0.8345042702863100,0.2452186439348585
), tolerance = 1e-8)
})
test_that("UScrime produces correct results zellner_siow_gauss_laguerre", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
tic("UScrime produces correct results zellner_siow_gauss_laguerre")
result <- blma(vy, mX, prior="zellner_siow_gauss_laguerre", modelprior="uniform", cores=1)
toc()
expect_equal(result$vinclusion_prob,
c(
0.6529769401658134,0.2267683042922373,0.8679006779519631,0.6958693064404039,
0.4227195813764409,0.1997499011462964,0.3232070948480962,0.5673433815457091,
0.3556018636146127,0.2408930357991375,0.4988904773520176,0.2135955436467171,
0.9969385837823601,0.8482357484625307,0.2236271676907234
)
, tolerance = 1e-8)
})
# prior = BIC, modelprior = beta-binomial
test_that("UScrime produces correct results modelprior beta-binomial", {
UScrime <- get_UScrime()
vy <- UScrime$vy
mX <- UScrime$mX
p <- ncol(mX)
tic("UScrime produces correct results modelprior beta-binomial")
result <- blma(vy, mX, prior="BIC", modelprior="beta-binomial", modelpriorvec = c(1, p), cores=cores)
toc()
expect_equal(result$vinclusion_prob, c(
0.28382041872785302,0.05401025213196230,0.52472573681024470,
0.67899545738306066,0.34415858271523636,0.05257683401220613,
0.31709892405155543,0.32163128053123047,0.09511945604467670,
0.04703321836137517,0.13984669234378327,0.05271970967353467,
0.99021404499476029,0.54819562466110150,0.06534213149560644
), tolerance = 1e-8)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.