Description Public fields Methods
ClassificationCase provides a coherent structure to keep all information of one diagnostic case used for methylation prediction within a single object.
basename
Basename (prefix of IDAT file).
beta_values
Matrix of beta values.
class_type
Predicted class of sample.
class_votes
Matrix of class probabilities.
cnv
Segmented copy number data created by conumee.
error
Boolean, TRUE if error occured during execution (default: FALSE).
error_code
Contains error code if execution failed (default: NULL).
imputed_n
Number of imputed data points.
n_probes
Number of raw intensity measurements. Used to guess array type.
normalization_method
Method used for normalization.
normalized_data
Object of class MethylSet, generated by minfi's preprocessing functions.
path
Directory containing the input files.
platform
Auto-detected array platform.
purity
List of length 2 with tumor purities estimated with RF_Purify package.
raw_data
Object of type RGSet containing raw array data generated with minfi::read.metharray().
rf
Object of type "randomForest". Contains the classifier object which needs to be supplied while the methods run_classification() or run_workflow().
verbose
Print informative messages (Boolean, default: TRUE).
new()
Create a new ClassificationCase instance.
ClassificationCase$new(basename, path, verbose = TRUE)
basename
Basename of sample.
path
Input directory with IDAT files.
verbose
Print informative messages (Default: TRUE).
A new 'ClassificationCase' object.
validate()
Perform input file checks. This is quite extensive actually. After checking whether the input files exists, the data are read (to check for corrupt files) and the information is futher used to investigate whether the files have the same no. of probes. In addition, the array type is guessed based on the number of probes. If any of these steps should go wrong, the program records an error code to help narrow down the problem.
ClassificationCase$validate(verbose = TRUE)
verbose
Print informative messages (Boolean, default: TRUE).
Inherits from ClassificationCase$new
.
terminate()
Internal function to terminate processing and record error code.
ClassificationCase$terminate(error_code)
error_code
Error code encountered.
load_data()
Load data for sample
ClassificationCase$load_data(verbose = TRUE)
verbose
Print helpful messages (default: TRUE)
normalize_data()
Perform background normalization
ClassificationCase$normalize_data(preprocess_function = NULL, verbose = TRUE)
preprocess_function
Function used for preprocessing of the data. If NULL, will use minfi::preprocessIllumina() to perform background intensity correction (Default: NULL)
verbose
Print helpful messages (default: TRUE)
get_betas()
Extract beta values from MethylSet object
ClassificationCase$get_betas(verbose = TRUE)
verbose
Print helpful messages (default: TRUE)
impute_data()
Perform missing data imputation
ClassificationCase$impute_data(imputation_function = NULL, verbose = TRUE)
imputation_function
Function used to perform imputation. Has to be able to use matrix of beta values for a single sample as input. If NULL, performs random data imputation (beta values are to fill in gaps are sampled from available data, Default: NULL)
verbose
Print helpful messages (Default: TRUE)
run_classification()
Classify tumor sample
ClassificationCase$run_classification(rf_object, verbose = TRUE)
rf_object
RandomForest predictor object
verbose
Print helpful messages (default: TRUE)
prepare_cnv()
Prepare copy-number plot
ClassificationCase$prepare_cnv(verbose = TRUE)
verbose
Print helpful messages (default: TRUE)
estimate_purity()
Perform tumor purity estimation
ClassificationCase$estimate_purity(verbose = TRUE)
verbose
Print helpful messages (default: TRUE)
run_workflow()
Run full sample workflow
ClassificationCase$run_workflow(rf_object, verbose = TRUE)
rf_object
RandomForest predictor object. Passed to run_classification()
verbose
Print helpful messages (default: TRUE)
clone()
The objects of this class are cloneable with this method.
ClassificationCase$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.