NFMiss_se: Estimate standard error using asymptotic formula for...

Description Usage Arguments Value

View source: R/SIsMiss_se.R

Description

Estimate standard error using asymptotic formula for unregularized regression.

Usage

1
2
NFMiss_se(y, z, u, gamma_tilde_hat, beta_hat, se.method, M = 500, seed_num,
  regularize, data_pair, newcov_pair, obs_id, w_hat)

Arguments

y

Vector. The outcome variable

z

Vector. The shadow variable (fully observed).

u

Matrix. The covariate matrix U.

gamma_tilde_hat

Initial estimates of scaled γ.

beta_hat

Initial estimates of β.

se.method

Charactor. The method for estimating standard error of parameters. Three options are available.

"asymp"

distribution. This option is applicable to regularize=FALSE only.

"perturb"

This option is applicable to both regularize=FALSE and regularize=TRUE.

NULL
M

Number of resampling in perturbation.

seed_num

Number of seed to control randomness of perturbation term generated.

regularize

If the objective is to fit a regularized linear regression for variable selection, regularize = TRUE. By default, regularize = FALSE.

data_pair

Matrix. The pairwise version of original data obtained from function pair_trans()$data_pair.

newcov_pair

Matrix. The pairwise transformed covariates obtained from function pair_trans()$newcov_pair.

obs_id

Vector. The indice of missingness for subjects obtained from function pair_trans.

w_hat

Matrix. The estimates of W matrix in the offset term obtained by pair_trans.

Value

A vector. The standard error of estimators in unregularized regression.


chenchi0526/SIsMiss documentation built on Dec. 8, 2020, 2:35 a.m.