#===================================================================================
#R version 3.5.1 (2018-07-02) -- "Feather Spray"
#Copyright (C) 2018 The R Foundation for Statistical Computing
#Platform: x86_64-w64-mingw32/x64 (64-bit)
#===================================================================================
# example of package 'BoostedHP'
#===================================================================================
# Date: 2019-07-23
#===================================================================================
# By Chen Yang: chen_yang@link.cuhk.edu.hk
#===================================================================================
# install package 'BoostedHp'
devtools::install_github("chenyang45/BoostedHP/BoostedHP")
# or
devtools::install_github("chenyang45/BoostedHP/BoostedHP", INSTALL_opts=c("--no-multiarch"))
library(BoostedHP)
# conduct the HP-filter and produce object bHP
?BoostedHP
library(tseries)
lam <- 100 # tuning parameter for the annaul data
data(IRE) # laod the data 'IRE'
# raw HP filter
bx_HP <- BoostedHP(IRE, lambda = lam, iter= FALSE)
# by BIC
bx_BIC <- BoostedHP(IRE, lambda = lam, iter= TRUE, test_type = "BIC")
# by ADF
bx_ADF <- BoostedHP(IRE, lambda = lam, iter= TRUE, test_type = "adf")
# by none test type
# Iterated HP filter until Max_Iter and keep the path of BIC.
bx_none <- BoostedHP(IRE, lambda = lam, iter= TRUE, test_type = "none")
#-------- plot -----------
?plot.bHP
#--------- start to plot the content of bHP -----------------
#--------- for dynamic style (default)--------
plot(bx_ADF)
plot(bx_ADF, iteration_location = "upright") # change the location of text
plot(bx_ADF, iteration_location = c(30,12)) # assign the location of text by x-y co-ordinates
plot(bx_BIC, interval_t = 0.8 ) # change the time interval of animation
plot(bx_none, cex_legend = 2, cex_text = 3) # change the magnification of legend and text
# change the color
plot(bx_ADF,main = "dynamic graph with new color",col_raw = "#685F74", col_trend_h = "#39A1A8", col_trend_f = "#DD4B4F", col_pvalue_BIC = "#E96145")
plot(bx_ADF,main = "dynamic graph with new trancparency setting",raw_alpha = 200, trend_h_alpha = 55, trend_f_alpha = 250, pvalue_BIC_alpha = 250)
plot(bx_HP)
# none-iter' bHP doesn't have dynamic picture: returning NA
#--------- for JS style ----------
plot(bx_ADF,plot_type = "JS")
# change the color
plot(bx_ADF,plot_type = "JS",main = "Js graph with new color", col_raw = "#685F74", col_trend_f = "#DD4B4F", col_pvalue_BIC = "#39A1A8")
plot(bx_BIC,plot_type = "JS")
plot(bx_none,plot_type = "JS")
plot(bx_HP,plot_type = "JS")
#--------- for static style ----------
plot(bx_ADF,plot_type = "static",cex_legend = 0.7, cex_text = 0.8 )
plot(bx_HP,plot_type = "static")
plot(bx_BIC,plot_type = "static",cex_legend = 0.7, cex_text = 0.8 )
plot(bx_none,plot_type = "static",cex_legend = 0.8, cex_text = 0.8 )
#----------- print -------------------------------
?print.bHP
#--------- start to print the content of bHP -----------------
print(bx_ADF)
print(bx_ADF, Head = F, Tail = T, trend_hist = F)
print(bx_ADF, Head = T, Tail = T, trend_hist = F)
print(bx_ADF, Head = F, Tail = F, trend_hist = F)
print(bx_BIC, Head = F, Tail = F, trend_hist = T, select_trend_hist = 1:bx_BIC$iter_num)
print(bx_BIC, Head = F, Tail = F, trend_hist = T, select_trend_hist = c(1,3,5))
# when the trend_hist is FALSE, select_trend_hist is invalid
print(bx_BIC, Head = F, Tail = F, trend_hist = F, select_trend_hist = c(1,3,5))
print(bx_BIC, Head = F, Tail = T, trend_hist = F, print_type = "latex")
print(bx_BIC, Head = F, Tail = T, trend_hist = F, print_type = "html")
# show the generic print function output
print(bx_ADF, type = "generic default")
#------------------ summary -----------------
?summary.bHP
summary(bx_ADF)
summary(bx_BIC)
summary(bx_none)
summary(bx_HP)
#------------------ predict -----------------
?predict.bHP
predict(bx_HP) #Iterated number of HP filter: 1
predict(bx_ADF) #Iterated number of HP filter: 19
predict(bx_BIC) #Iterated number of HP filter: 5
predict(bx_none) #Iterated number of HP filter: 99
#------------------ residuals -----------------
?residuals.bHP
residuals(bx_HP) #Iterated number of HP filter: 1
residuals(bx_ADF) #Iterated number of HP filter: 19
#------------------ BIC -------------------------
?BIC.bHP
BIC(bx_BIC)
#Retrun the value path of BIC.
#Iterated number of HP filter: 5
#Keep the path of BIC till iterated 6 times to show the tuning point.
#[1] 1.586255 1.366335 1.293931 1.264323 1.254397 1.254620
BIC(bx_none)
#Retrun the BIC path of none.
#Iterated number of HP filter: 99
#Keep the path of BIC till iterated 100 times to show the tuning point.
#[1] 1.586255 1.366335 1.293931 1.264323 1.254397 1.254620 1.260345 1.269139 1.279670 1.291179
#[11] 1.303223 ...
### If the test type is not "adf", Pvalue.bHP will return error
# raw HP filter
BIC(bx_HP)
# Error in BIC.bHP(bx_HP) :
# The stationary test type is none-iter, not BIC or none.
# by ADF
BIC(bx_ADF)
#Error in BIC.bHP(bx_ADF) :
#The stationary test type is adf, not BIC or none.
#--------------- Pvalue ---------------------
?Pvalue.bHP
Pvalue(bx_ADF)
# Retrun the value path of adf.
# Iterated number of HP filter: 19
# [1] 0.26932206 0.16154351 0.10943027 0.09301570 0.08624282 0.08172733 0.07880462 0.07692725
# [9] 0.07561611 0.07449014 0.07326910 0.07175650 0.06981805 0.06736339 0.06433257 0.06068690
# [17] 0.05640284 0.05146806 0.04785197
### If the test type is not "adf", Pvalue.bHP will return error
# raw HP filter
Pvalue(bx_HP)
# Error in Pvalue.bHP(bx_HP) :
# The stationary test type is none-iter, not ADF.
# by BIC
Pvalue(bx_BIC)
# Error in Pvalue.bHP(bx_BIC) : The stationary test type is BIC, not ADF.
# by none test type
# Iterated HP filter until Max_Iter and keep the path of BIC.
Pvalue(bx_none)
#Error in Pvalue.bHP(bx_none) : The stationary test type is none, not ADF.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.