#' @title amDataSingleGetMore
#'
#' @description Generate additional observations for single mcmc simulation. amDataSingleGetMore is called within SeqSGPV.
#'
#' @param existingDataList Previously provided data
#' @param iInsufficient Single index of list element with insufficient data for SeqSGPV to be conclusion
#' @param getMore List of additional data to generate
#' @param dataGeneration See SeqSGPV
#' @param dataGenArgs See SeqSGPV
#' @param effectGeneration See SeqSGPV
#' @param effectGenArgs See SeqSGPV
#' @param effectScale See SeqSGPV
#' @param allocation See SeqSGPV
#' @param randomize TRUE if length(allocation) > 1
#' @param effectPN See SeqSGPV
#' @param null See SeqSGPV
#' @param deltaL2 See SeqSGPV
#' @param deltaL1 See SeqSGPV
#' @param deltaG1 See SeqSGPV
#' @param deltaG2 See SeqSGPV
#' @param modelFit See SeqSGPV
#' @param modelFitArgs See SeqSGPV
#'
#' @export
amDataSingleGetMore <- function( existingDataList, iInsufficient, getMore,
dataGeneration, dataGenArgs,
effectGeneration, effectGenArgs,
effectScale,
allocation,
randomize,
effectPN, null, deltaL2, deltaL1, deltaG1, deltaG2,
modelFit, modelFitArgs ){
if(randomize==FALSE){
effectX <- "effect0"
} else {
effectX <- "effect1"
}
dataGenArgs$n <- getMore[iInsufficient]
effectGeneration <- existingDataList[[iInsufficient]][1,effectX]
amDataSingleMore <- amDataSingle( existingData = existingDataList[[iInsufficient]],
dataGeneration = dataGeneration, dataGenArgs = dataGenArgs,
effectGeneration = effectGeneration, effectGenArgs = effectGenArgs,
effectScale = effectScale,
allocation = allocation,
randomize = randomize,
modelFit = modelFit,
modelFitArgs = modelFitArgs)
amDataSingleMore <- addStats(o = amDataSingleMore,
randomize = randomize,
effectPN = effectPN,
null = null,
deltaL2 = deltaL2, deltaL1 = deltaL1,
deltaG1 = deltaG1, deltaG2 = deltaG2)
return(amDataSingleMore)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.