##' Calculate the expected value of perfect information from a decision model
##'
##' Calculate the expected value of perfect information from a decision model using standard Monte Carlo simulation
##'
##' @inheritParams evppi
##'
##' @return The expected value of perfect information, either as a single value, or a data frame indicating the value for each willingness-to-pay.
##'
##' @export
evpi <- function(outputs,
nsim=NULL)
{
outputs <- check_outputs(outputs)
if (is.null(nsim)) nsim <- if (inherits(outputs, "nb")) nrow(outputs) else nrow(outputs$e)
outputs <- subset_outputs(outputs, nsim)
if (inherits(outputs, "nb")){
res <- mean(apply(outputs, 1, max)) - max(colMeans(outputs))
} else if (inherits(outputs, "cea")){
nwtp <- length(outputs$k)
res <- numeric(length(nwtp))
for (i in 1:nwtp){
nb <- outputs$e * outputs$k[i] - outputs$c
res[i] <- mean(apply(nb, 1, max)) - max(colMeans(nb))
}
res <- data.frame(k = outputs$k, evpi = res)
}
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.