Firestar: Firestar - Computerized Adaptive Testing (CAT) simulation...

View source: R/Firestar.R

FirestarR Documentation

Firestar - Computerized Adaptive Testing (CAT) simulation program

Description

Firestar simulates CAT with dichotomous and polytomous IRT models and generates results in various tables and plots

Usage

Firestar(
  filename.ipar = "",
  item.pool = NULL,
  filename.resp = "",
  filename.content = "",
  ncc = 1,
  filename.theta = "",
  true.theta = NULL,
  min.score.0 = FALSE,
  simulate.theta = FALSE,
  pop.dist = "NORMAL",
  pop.par = c(0, 1),
  n.simulee = 1000,
  eap.full.length = TRUE,
  max.cat = 5,
  min.theta = -4,
  max.theta = 4,
  inc = 0.1,
  min.NI = 4,
  max.NI = 12,
  max.SE = 0.3,
  exposure.control = FALSE,
  exposure.control.method = "RD",
  top.N = 1,
  PAS = 1,
  r.max = 0.25,
  stop.SE = 0.01,
  continue.SE = 0.03,
  min.SE.change = 0,
  extreme.response.check = "N",
  max.extreme.response = 4,
  selection.method = "MPWI",
  info.AMC = "KL",
  stop.AMC = "SE",
  alpha.AMC = 0.05,
  BH = FALSE,
  interim.theta = "EAP",
  Fisher.scoring = TRUE,
  shrinkage.correction = FALSE,
  se.method = 1,
  first.item.selection = 1,
  first.at.theta = 0,
  first.item = 1,
  show.theta.audit.trail = FALSE,
  plot.usage = FALSE,
  plot.info = FALSE,
  plot.prob = FALSE,
  add.final.theta = FALSE,
  bank.diagnosis = FALSE,
  prior.dist = 1,
  prior.mean = 0,
  prior.sd = 1,
  file.items.used = "",
  file.theta.history = "",
  file.se.history = "",
  file.final.theta.se = "",
  file.other.thetas = "",
  file.likelihood.dist = "",
  file.posterior.dist = "",
  file.matrix.info = "",
  file.full.length.theta = "",
  file.selected.item.resp = "",
  output.previous = NULL
)

Arguments

filename.ipar

Name of a required item parameter file (comma separated, no headers, columns in the order of id, model, a, cb1, cb2,...,cbk, blank for NA; model: 1=1PL, 2=2PL, 3=3PL, 4=PC, 5=GPC, 6=GR)

item.pool

Object of item.pool class

filename.resp

Name of an optional item response file (comma separated, no headers, item responses, base 1, blank for missing)

filename.content

Name of an optional content specification file

ncc

Number of Content Categories, effective only if content balancing is invoked by providing filename.content

filename.theta

Name of an optional true or external theta file

true.theta

True theta values (default: NULL)

min.score.0

TRUE if the minimum item score is 0 not 1 (default: FALSE)

simulate.theta

TRUE to simulate item responses or FALSE to read in from an external file (filename.theta)

pop.dist

Population distribution type for simulated theta: NORMAL, UNIFORM, or GRID

pop.par

Population distribution parameters: For example, pop.par=c(M,SD) if pop.dist="NORMAL", pop.par=c(LL,UL) if pop.dist="UNIFORM", or pop.par=c(-3,-2,...3) if pop.dist="GRID"

n.simulee

Toral number of simulees to generate if pop.dist in c("NORMAL","UNIFORM") or the number per theta point if pop.dist="GRID"

eap.full.length

TRUE to generate EAP theta estimates based on all items or FALSE to supress

max.cat

Maximum number of response categories across items

min.theta

Minimum theta value

max.theta

Maximum theta value

inc

Theta increment value to generate a grid between min.theta and max.theta

min.NI

Minimum number of items to administer (default: 4)

max.NI

Maximum number of items to administer (default: 12)

max.SE

Maximum SE for stopping

exposure.control

TRUE to invoke exposure control or FALSE to supress (default: FALSE)

exposure.control.method

Exposure control method: RD, PR, SH (defaul: "RD")

top.N

Top N items from which a next item is selected randomly; effective when exposure.control.method == "Randomesque" (default: 1)

PAS

A vector of the Probability of Administration given Selection, P(A|S), for each item; effective when exposure.control.method == "SH" (default: 1)

r.max

Maximumum target exposure rate; effective when exposure.control.method == "SH" (default = 0.25)

stop.SE

Minimum reduction in predicted SE to override continuing and stop under PSER (default: 0.01)

continue.SE

Minimum reduction in predicted SE to override stopping and continue under PSER (default: 0.03)

min.SE.change

Minimum reduction in SE to continue beyond satisfying min.NI (default: 0.0); not effective under PSER

extreme.response.check

Check for repeated extreme responses: L for checking in the left side (low) only, R for right (high) only, E for either, or N for neither (default: N)

max.extreme.response

Maximum number of responses allowed before stopping (default: 4)

selection.method

Item selection method: MFI, MKL, MLWI, MPWI, MPWKL, MEI, MEPV, MEPWI, RND, KET, LOC, SEQ, TSB, PSER, MI, or AMC (default: MPWI)

info.AMC

Information method for AMC: KL, MI, PWKL, or FI (default: KL)

stop.AMC

Test statistic for AMC to determine whether to stop: SE, Z, LR, or ST (default: SE)

alpha.AMC

Type-I error rate for AMC test statistic (default: 0.05)

BH

TRUE to apply Benjamini-Hotchberg correction (default: FALSE)

interim.theta

Interim theta estimator: EAP or MLE

Fisher.scoring

TRUE to use Fisher's method of scoring for MLE

shrinkage.correction

TRUE to correct for the bias of EAP (default: FALSE)

se.method

SE estimation method: 1 = Posterior Standard Deviation or 2 = Inverse of Square Root of Information

first.item.selection

Alternative first item selection method: 1 = Prior Mean, 2 = At a fixed value specified by first.at.theta, 3 = Use a specific item identified by first.item, or 4 = At external or theta values specified by filename.theta

first.at.theta

Specific theta location at which the first item is optimized

first.item

Specific item number to be selected as the first item

show.theta.audit.trail

TRUE to generate CAT audit trail plots or FALSE to suppress

plot.usage

TRUE to generate item usage plot or FALSE to suppress

plot.info

TRUE to generate item intormation plots or FALSE to suppress

plot.prob

TRUE to generate item response probability plots or FALSE to suppress

add.final.theta

TRUE to append three additional final theta estimates (MLE, MAP, and WLE) to file.other.thetas or FALSE to supress

bank.diagnosis

TRUE to generate item bank diagnostic plots or FALSE to suppress

prior.dist

Type of prior distribution: 1 = Normal or 2 = Losgistic

prior.mean

Prior distribution mean (default: 0.0)

prior.sd

Prior distribution standard deviation (default: 1.0)

file.items.used

Name of the file to contain information on items administered

file.theta.history

Name of the file to contain information on history of theta estimates

file.se.history

Name of the file to contain information on history of SE estimates

file.final.theta.se

Name of the file to contain final theta and SE estimates

file.other.thetas

Name of the file to contain other theta estimates (MLE, MAP, and WLE)

file.likelihood.dist

Name of the file to contain likelihood functions

file.posterior.dist

Name of the file to contain posterior distributions

file.matrix.info

Name of the file to contain the item information matrix

file.full.length.theta

Name of the file to contain theta estimates based on all items in the bank

file.selected.item.resp

Name of the file to contain item responses for the selected items only

output.previous

List object from Firestar for the previous test

Details

Firestar is designed for simulating CAT with dichotomous and polytomous items. The item response theory models supported by the program include the dichotomous models (Birnbaum, 1968), Samejima's (1969) graded response model (GRM) and Muraki's (1992) generalized partial credit model (GPCM). Both Masters' (1982) partial credit model (PCM) and Andrich's (1978) rating scale model are also supported as special cases of the GPCM.

Value

List of summary statistics and output results:

  • call Call with all of the specified arguments

  • nia Total number of items administered

  • mean.nia Mean of the number of items administered

  • cor.theta Correlation between true theta and theta from CAT

  • rmsd.theta RMSE based on true theta and theta from CAT

  • true.theta True theta

  • mean.SE Mean standard error

  • item.pool Item pool object

  • resp Item response matrixc

  • items.used Items used by examinee

  • theta.history Theta history by examinee

  • se.history Standard error history by examinee

  • selected.item.resp Selected item responses by examinee

  • final.theta.se Final theta and standard error by examinee

  • likelihood.dist Final likelihood distribution by examinee

  • posterior.dist Final posterior distribution by examinee

  • matrix.info Matrix of item information

  • ni.administered Number of items administered by examinee

  • Z Z-test statistic if selection.method == 'AMC'

  • LR Likelihood-ratio test statistic if selection.method == 'AMC'

  • ST Score test statistic if selection.method == 'AMC'

Author(s)

Seung W Choi, schoi@austin.utexas.edu

References

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561-573. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479). Reading, MA: Addison-Wesley. Choi, S. W. (2009). Computerized Adaptive Testing Simulation Program for Polytomous IRT Models. Applied Psychological Measurement. 33, 644-645. Choi, S. W., & Swartz, J. R. (2009). Comparison of CAT Item Selection Criteria for Polytomous Items. Applied Psychological Measurement. 33, 419-440. Choi, S. W., Grady, M., & Dodd, B. G. (2011). A new stopping rule for computerized adaptive testing. Educational and Psychological Measurement. 71, 37-53. Choi, S. W., Podrabsky, T., & McKinney, N. (2012). Firestar-D: Computerized Adaptive Testing Simulation Program for Dichotomous Item Response Theory Models. Applied Psychological Measurement, 36, 67-68. Choi, S. W. (2018). Firestar: Simulating Computerized Adaptive Testing. In W. J. van der Linden (Ed.), Handbook of Item Response Theory. Chapman and Hall/CRC. Finkelman, M. D., Weiss, D. J., Kim-Kang, G. (2010). Item selection and hypothesis testing for the adaptive measurement of change. Applied Psychological Measurement, 34, 238-254. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174. Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159-176. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.


choi-phd/Firestar documentation built on Sept. 14, 2022, 1:47 a.m.