Firestar | R Documentation |
Firestar
simulates CAT with dichotomous and polytomous IRT models and generates results in various tables and plots
Firestar( filename.ipar = "", item.pool = NULL, filename.resp = "", filename.content = "", ncc = 1, filename.theta = "", true.theta = NULL, min.score.0 = FALSE, simulate.theta = FALSE, pop.dist = "NORMAL", pop.par = c(0, 1), n.simulee = 1000, eap.full.length = TRUE, max.cat = 5, min.theta = -4, max.theta = 4, inc = 0.1, min.NI = 4, max.NI = 12, max.SE = 0.3, exposure.control = FALSE, exposure.control.method = "RD", top.N = 1, PAS = 1, r.max = 0.25, stop.SE = 0.01, continue.SE = 0.03, min.SE.change = 0, extreme.response.check = "N", max.extreme.response = 4, selection.method = "MPWI", info.AMC = "KL", stop.AMC = "SE", alpha.AMC = 0.05, BH = FALSE, interim.theta = "EAP", Fisher.scoring = TRUE, shrinkage.correction = FALSE, se.method = 1, first.item.selection = 1, first.at.theta = 0, first.item = 1, show.theta.audit.trail = FALSE, plot.usage = FALSE, plot.info = FALSE, plot.prob = FALSE, add.final.theta = FALSE, bank.diagnosis = FALSE, prior.dist = 1, prior.mean = 0, prior.sd = 1, file.items.used = "", file.theta.history = "", file.se.history = "", file.final.theta.se = "", file.other.thetas = "", file.likelihood.dist = "", file.posterior.dist = "", file.matrix.info = "", file.full.length.theta = "", file.selected.item.resp = "", output.previous = NULL )
filename.ipar |
Name of a required item parameter file (comma separated, no headers, columns in the order of id, model, a, cb1, cb2,...,cbk, blank for NA; model: 1=1PL, 2=2PL, 3=3PL, 4=PC, 5=GPC, 6=GR) |
item.pool |
Object of item.pool class |
filename.resp |
Name of an optional item response file (comma separated, no headers, item responses, base 1, blank for missing) |
filename.content |
Name of an optional content specification file |
ncc |
Number of Content Categories, effective only if content balancing is invoked by providing filename.content |
filename.theta |
Name of an optional true or external theta file |
true.theta |
True theta values (default: NULL) |
min.score.0 |
TRUE if the minimum item score is 0 not 1 (default: FALSE) |
simulate.theta |
TRUE to simulate item responses or FALSE to read in from an external file (filename.theta) |
pop.dist |
Population distribution type for simulated theta: NORMAL, UNIFORM, or GRID |
pop.par |
Population distribution parameters: For example, pop.par=c(M,SD) if pop.dist="NORMAL", pop.par=c(LL,UL) if pop.dist="UNIFORM", or pop.par=c(-3,-2,...3) if pop.dist="GRID" |
n.simulee |
Toral number of simulees to generate if pop.dist in c("NORMAL","UNIFORM") or the number per theta point if pop.dist="GRID" |
eap.full.length |
TRUE to generate EAP theta estimates based on all items or FALSE to supress |
max.cat |
Maximum number of response categories across items |
min.theta |
Minimum theta value |
max.theta |
Maximum theta value |
inc |
Theta increment value to generate a grid between min.theta and max.theta |
min.NI |
Minimum number of items to administer (default: 4) |
max.NI |
Maximum number of items to administer (default: 12) |
max.SE |
Maximum SE for stopping |
exposure.control |
TRUE to invoke exposure control or FALSE to supress (default: FALSE) |
exposure.control.method |
Exposure control method: RD, PR, SH (defaul: "RD") |
top.N |
Top N items from which a next item is selected randomly; effective when exposure.control.method == "Randomesque" (default: 1) |
PAS |
A vector of the Probability of Administration given Selection, P(A|S), for each item; effective when exposure.control.method == "SH" (default: 1) |
r.max |
Maximumum target exposure rate; effective when exposure.control.method == "SH" (default = 0.25) |
stop.SE |
Minimum reduction in predicted SE to override continuing and stop under PSER (default: 0.01) |
continue.SE |
Minimum reduction in predicted SE to override stopping and continue under PSER (default: 0.03) |
min.SE.change |
Minimum reduction in SE to continue beyond satisfying min.NI (default: 0.0); not effective under PSER |
extreme.response.check |
Check for repeated extreme responses: L for checking in the left side (low) only, R for right (high) only, E for either, or N for neither (default: N) |
max.extreme.response |
Maximum number of responses allowed before stopping (default: 4) |
selection.method |
Item selection method: MFI, MKL, MLWI, MPWI, MPWKL, MEI, MEPV, MEPWI, RND, KET, LOC, SEQ, TSB, PSER, MI, or AMC (default: MPWI) |
info.AMC |
Information method for AMC: KL, MI, PWKL, or FI (default: KL) |
stop.AMC |
Test statistic for AMC to determine whether to stop: SE, Z, LR, or ST (default: SE) |
alpha.AMC |
Type-I error rate for AMC test statistic (default: 0.05) |
BH |
TRUE to apply Benjamini-Hotchberg correction (default: FALSE) |
interim.theta |
Interim theta estimator: EAP or MLE |
Fisher.scoring |
TRUE to use Fisher's method of scoring for MLE |
shrinkage.correction |
TRUE to correct for the bias of EAP (default: FALSE) |
se.method |
SE estimation method: 1 = Posterior Standard Deviation or 2 = Inverse of Square Root of Information |
first.item.selection |
Alternative first item selection method: 1 = Prior Mean, 2 = At a fixed value specified by first.at.theta, 3 = Use a specific item identified by first.item, or 4 = At external or theta values specified by filename.theta |
first.at.theta |
Specific theta location at which the first item is optimized |
first.item |
Specific item number to be selected as the first item |
show.theta.audit.trail |
TRUE to generate CAT audit trail plots or FALSE to suppress |
plot.usage |
TRUE to generate item usage plot or FALSE to suppress |
plot.info |
TRUE to generate item intormation plots or FALSE to suppress |
plot.prob |
TRUE to generate item response probability plots or FALSE to suppress |
add.final.theta |
TRUE to append three additional final theta estimates (MLE, MAP, and WLE) to file.other.thetas or FALSE to supress |
bank.diagnosis |
TRUE to generate item bank diagnostic plots or FALSE to suppress |
prior.dist |
Type of prior distribution: 1 = Normal or 2 = Losgistic |
prior.mean |
Prior distribution mean (default: 0.0) |
prior.sd |
Prior distribution standard deviation (default: 1.0) |
file.items.used |
Name of the file to contain information on items administered |
file.theta.history |
Name of the file to contain information on history of theta estimates |
file.se.history |
Name of the file to contain information on history of SE estimates |
file.final.theta.se |
Name of the file to contain final theta and SE estimates |
file.other.thetas |
Name of the file to contain other theta estimates (MLE, MAP, and WLE) |
file.likelihood.dist |
Name of the file to contain likelihood functions |
file.posterior.dist |
Name of the file to contain posterior distributions |
file.matrix.info |
Name of the file to contain the item information matrix |
file.full.length.theta |
Name of the file to contain theta estimates based on all items in the bank |
file.selected.item.resp |
Name of the file to contain item responses for the selected items only |
output.previous |
List object from Firestar for the previous test |
Firestar
is designed for simulating CAT with dichotomous and polytomous items.
The item response theory models supported by the program include the dichotomous models (Birnbaum, 1968), Samejima's (1969) graded response model (GRM) and
Muraki's (1992) generalized partial credit model (GPCM). Both Masters' (1982) partial credit model (PCM) and
Andrich's (1978) rating scale model are also supported as special cases of the GPCM.
List of summary statistics and output results:
call
Call with all of the specified arguments
nia
Total number of items administered
mean.nia
Mean of the number of items administered
cor.theta
Correlation between true theta and theta from CAT
rmsd.theta
RMSE based on true theta and theta from CAT
true.theta
True theta
mean.SE
Mean standard error
item.pool
Item pool object
resp
Item response matrixc
items.used
Items used by examinee
theta.history
Theta history by examinee
se.history
Standard error history by examinee
selected.item.resp
Selected item responses by examinee
final.theta.se
Final theta and standard error by examinee
likelihood.dist
Final likelihood distribution by examinee
posterior.dist
Final posterior distribution by examinee
matrix.info
Matrix of item information
ni.administered
Number of items administered by examinee
Z
Z-test statistic if selection.method == 'AMC'
LR
Likelihood-ratio test statistic if selection.method == 'AMC'
ST
Score test statistic if selection.method == 'AMC'
Seung W Choi, schoi@austin.utexas.edu
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561-573. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479). Reading, MA: Addison-Wesley. Choi, S. W. (2009). Computerized Adaptive Testing Simulation Program for Polytomous IRT Models. Applied Psychological Measurement. 33, 644-645. Choi, S. W., & Swartz, J. R. (2009). Comparison of CAT Item Selection Criteria for Polytomous Items. Applied Psychological Measurement. 33, 419-440. Choi, S. W., Grady, M., & Dodd, B. G. (2011). A new stopping rule for computerized adaptive testing. Educational and Psychological Measurement. 71, 37-53. Choi, S. W., Podrabsky, T., & McKinney, N. (2012). Firestar-D: Computerized Adaptive Testing Simulation Program for Dichotomous Item Response Theory Models. Applied Psychological Measurement, 36, 67-68. Choi, S. W. (2018). Firestar: Simulating Computerized Adaptive Testing. In W. J. van der Linden (Ed.), Handbook of Item Response Theory. Chapman and Hall/CRC. Finkelman, M. D., Weiss, D. J., Kim-Kang, G. (2010). Item selection and hypothesis testing for the adaptive measurement of change. Applied Psychological Measurement, 34, 238-254. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174. Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159-176. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, No. 17.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.