#' @include datasets.R
NULL
if (FALSE) {
fp <- system.file("data-raw", package = "PROsetta")
d <- loadData(
response = "dat_DeCESD_v2.csv",
itemmap = "imap_DeCESD.csv",
anchor = "anchor_DeCESD.csv",
input_dir = fp
)
freq_table <- runFrequency(d)
desc_table <- runDescriptive(d)
classical_table <- runClassical(d)
classical_table2 <- runClassical(d, omega = TRUE)
out_CFA <- runCFA(d)
lavaan::summary(out_CFA$combined, fit.measures = TRUE, standardized = TRUE)
## Item parameter linking to anchor data
out_link <- runLinking(d, technical = list(NCYCLES = 1000))
out_link <- runLinking(d, method = "FIXEDPAR", technical = list(NCYCLES = 1000))
out_link$constants
out_link$method
out_link$ipar_linked
out_link$ipar_anchor
rsss <- runRSSS(d, out_link) # Map raw scores to standardized scores using linked item parameters
head(rsss$`2`)
rsss$`1`$theta_score
## For item parameter examination, does not perform linking
out_calib <- runCalibration(d)
out_calib <- runCalibration(d, technical = list(NCYCLES = 1000))
out <- mirt::coef(out_calib, IRTpars = TRUE, simplify = TRUE)
mirt::itemfit(out_calib, empirical.plot = 1)
mirt::itemplot(out_calib, item = 1, type = "info")
mirt::itemfit(out_calib, "S_X2", na.rm = TRUE)
## Map raw scores from one scale to another scale
out_eqp <- runEquateObserved(d, scaleTo = 1, scaleFrom = 2, type = "equipercentile", smooth = "loglinear")
out_eqp$concordance
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.