View source: R/calSecDerNatSpline.R
| calSecDerNatSpline | R Documentation |
Natural Spline Basis and the Regularization Matrix A_m
calSecDerNatSpline(grd)
grd |
A vector of length p indicating the grd values where the spline functions are evaluated. |
calSecDerNatSpline calculates evaluated natural cubic splines
and the matrix A_m as described in Crambes, Kneip and Sarda
(2016).
calSecDerNatSpline calculates an evaluated natural cubic
spline basis corresponding to grd and a p \times p matrix
used for regularization in the smoothing splines estimator for the
functional linear model (Crambes, Kneip and Sarda,2016). A_m is
composed of a non-classical projection matrix and the classical
regularization matrix of squared second derivatives.
A list with entries
A_m |
The p \times p matrix A as described in (Crambes, Kneip and Sarda, 2016) |
X_B |
A p \times p matrix of natural cubic spline basis evaluated at |
Dominik Liebl, Stefan Rameseder and Christoph Rust
Crambes, C., Kneip, A., Sarda, P. (2009) Smoothing Splines Estimators for Functional Linear Regression. The Annals of Statistics, 37(1), 35-72.
FunRegPoI
## Not run:
library(FunRegPoI)
## Define Parameters for Simulation
DGP_name <- "Easy"
k_seq <- c(1,seq(2, 60, 4))
error_sd <- 0.125
N <- 500
p <- 300
domain <- c(0,1)
grd <- seq(domain[1],domain[2],length.out = p)
set.seed(1)
## simulate some data:
PoISim <- FunRegPoISim(N = N , grd, DGP = DGP_name , error_sd = error_sd)
NaturalSplines <- calSecDerNatSpline(grd)
# PESES
EstPeses <- FunRegPoI(Y = PoISim$Y , X_mat = PoISim$X , grd, estimator = "PESES",
k_seq = k_seq , A_m = NaturalSplines$A_m , X_B = NaturalSplines$X_B)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.