knitr::opts_chunk$set(comment = "##", collapse = TRUE)
data(geno_G2F) data(pheno_G2F) data(map_G2F) data(info_environments_G2F) data(soil_G2F) METdata_G2F_training <- create_METData( geno = geno_G2F, pheno = pheno_G2F[pheno_G2F$year%in%c(2014,2015,2016),], map = map_G2F, climate_variables = NULL, compute_climatic_ECs = TRUE, et0=T, info_environments = info_environments_G2F[info_environments_G2F$year%in%c(2014,2015,2016),], soil_variables = soil_G2F[soil_G2F$year%in%c(2014,2015,2016),], path_to_save = "~/Data/PackageMLpredictions/learnmet_plus/benchmarking_g2f/results_g2f_forward_3" ) METdata_G2F_new <- create_METData( geno = geno_G2F, pheno = as.data.frame(pheno_G2F[pheno_G2F$year%in%2017,] %>% dplyr::select(-pltht,-yld_bu_ac,-earht)), map = map_G2F, climate_variables = NULL, compute_climatic_ECs = TRUE, et0=T, info_environments = info_environments_G2F[info_environments_G2F$year%in%2017,], soil_variables = soil_G2F[soil_G2F$year%in%2017,], path_to_save = "~/Data/PackageMLpredictions/learnmet_plus/benchmarking_g2f/results_g2f_forward_3", as_test_set = T ) met_pred <- predict_trait_MET( METData_training = METdata_G2F_training, METData_new = METdata_G2F_new, trait = 'yld_bu_ac', prediction_method = 'xgb_reg_1', use_selected_markers = F, lat_lon_included = F, year_included = F, save_model = T, num_pcs = 200, include_env_predictors = T, save_splits = T, seed = 100, save_processing = T, path_folder = '~/g2f/res_xgb/cv0' )
fitted_split <- met_pred$list_results[[1]] learnMET::variable_importance_split(object = fitted_split, path_plot = '~/g2f/res_xgb/cv0', type = 'model_specific')
learnMET::variable_importance_split(object = fitted_split, path_plot = '~/g2f/res_xgb/cv0', type = 'model_agnostic')
learnMET::ALE_plot_split(fitted_split, path_plot = '~/g2f/res_xgb/cv0', variable ='freq_P_sup10_2', nb_bins = 6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.