View source: R/variable_importance.R
variable_importance_split | R Documentation |
Variable importance can be calculated based on model-specific and model-agnostic approaches
variable_importance_split(object, ...)
## Default S3 method:
variable_importance_split(object, ...)
## S3 method for class 'fitted_DL_reg_1'
variable_importance_split(object)
## S3 method for class 'fitted_DL_reg_2'
variable_importance_split(object)
## S3 method for class 'fitted_xgb_reg_1'
variable_importance_split(
object,
path_plot,
type = "model_specific",
permutations = 10,
unseen_data = F
)
## S3 method for class 'fitted_xgb_reg_2'
variable_importance_split(object)
## S3 method for class 'fitted_stacking_reg_1'
variable_importance_split(object)
## S3 method for class 'fitted_stacking_reg_2'
variable_importance_split(object)
## S3 method for class 'fitted_stacking_reg_3'
variable_importance_split(object)
## S3 method for class 'fitted_rf_reg_1'
variable_importance_split(object)
## S3 method for class 'fitted_rf_reg_2'
variable_importance_split(object)
## S3 method for class 'fitted_rf_reg_2'
variable_importance_split(object)
## S3 method for class 'fitted_rf_reg_1'
variable_importance_split(object)
object |
an object of class |
type |
|
permutations |
By default, equal to 10. |
unseen_data |
Cathy C. Westhues cathy.jubin@hotmail.com
breiman2001randomlearnMET \insertRefmolnar2022learnMET
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.