CentipedeMixEm-class: Actual EM algorithm for CENTIPEDE

Description Arguments Value

Description

Actual EM algorithm for CENTIPEDE

Arguments

k

number of mixed distributions

l

number of rows in X

s

number of columns in X

X

observed experimental data matrix

R

number of reads in each motif, sum of each row in X

G

prior information matrix (PWM+Cons.Score+TSS)

Z

binary variable used to initialize beta's

pi_mat

prior probability matrix

B

beta's for the logistic regression used to calculate pi_l

a0

parameters for negative binomial distribution unbound

a1

parameters for negative binomial distribution bound

tau0

parameters for negative binomial distribution unbound

tau1

parameters for negative binomial distribution bound

lambda

parameters for the multinomial distribution

prob_mat

posterior probability matrix

log_prob_vec

log of posterior probability of bound

max_log

maximum of log posterior bound probability

loglik

log likelihood

tol

threshold for testing convergence

logittau0

logit scale of tau0

logittau1

logit scale of tau1

logitbeta

logit scale of beta

Value

A list of convergence, updated parameters, posterior probabilities, iterations, log likelihood list, bound or unbound status #'@export


cmboye/CENTIPEDE_Reimplementation documentation built on Dec. 23, 2021, 10:19 p.m.