library(sf)
library(readr)
library(dplyr)
library(rmapshaper)
# population data --------------------------------------------------------------
x <-
read_csv(
file = "data-raw/TABLECODE7979_Data_8243d362-2d6a-4673-874e-850235d63cd1.csv"
) %>%
filter(!AREA %in% c("NZRC", "NIRC", "SIRC")) %>%
select(-AGE, -SEX, -Flags) %>%
mutate(geography = ifelse (nchar(AREA) == 2, "regc2018", "sa22018")) %>%
rename(code = AREA) %>%
setNames(tolower(colnames(.))) %>%
select(geography, code, year, value)
y <-
read_csv(
file = "data-raw/TABLECODE7980_Data_3ed576cb-a733-4e06-80ef-5bc8264d8d27.csv"
) %>%
filter(!AREA %in% c("NZTA")) %>%
select(-AGE, -SEX, -Flags) %>%
filter(nchar(AREA) == 3) %>%
mutate(geography = "ta2018") %>%
rename(code = AREA) %>%
setNames(tolower(colnames(.))) %>%
select(geography, code, year, value)
popdata <- rbind(x, y) %>%
arrange(geography, code, year) %>%
data.frame
# spatial data -----------------------------------------------------------------
regc2018 <- st_read("data-raw/regc2018.gpkg",
stringsAsFactors = FALSE) %>%
setNames(tolower(colnames(.))) %>%
filter(regc2018_v1_00 != "99") %>%
rename(code = regc2018_v1_00, label = regc2018_v1_00_name) %>%
select(code, label) %>%
rmapshaper::ms_simplify(keep_shapes = TRUE)
ta2018 <- st_read("data-raw/ta2018.gpkg",
stringsAsFactors = FALSE) %>%
setNames(tolower(colnames(.))) %>%
filter(ta2018_v1_00 != "067") %>%
rename(code = ta2018_v1_00, label = ta2018_v1_00_name) %>%
select(code, label) %>%
rmapshaper::ms_simplify(keep_shapes = TRUE)
sa22018 <- st_read("data-raw/sa22018.gpkg",
stringsAsFactors = FALSE) %>%
setNames(tolower(colnames(.))) %>%
filter(sa22018_v1_00 != "343000") %>%
rename(code = sa22018_v1_00, label = sa22018_v1_00_name) %>%
select(code, label) %>%
rmapshaper::ms_simplify(keep_shapes = TRUE)
sa12018 <- st_read("data-raw/sa12018.gpkg",
stringsAsFactors = FALSE) %>%
setNames(tolower(colnames(.))) %>%
filter(!sa12018_v1_00 %in%
c("7027634", "7027635", "7027637", "7027639", "7027636", "7027640")) %>%
rename(code = sa12018_v1_00) %>%
select(code) %>%
rmapshaper::ms_simplify(keep_shapes = TRUE)
mb2018 <- st_read("data-raw/mb2018.gpkg",
stringsAsFactors = FALSE) %>%
setNames(tolower(colnames(.))) %>%
filter(!mb2018_v1_00 %in%
c("2716700", "2716601", "2716603", "2717500",
"2716801", "2716802", "2717100", "2717200",
"2717300", "2717000", "2717400")) %>%
rename(code = mb2018_v1_00) %>%
select(code) %>%
ms_simplify(keep_shapes = TRUE)
# save data --------------------------------------------------------------------
usethis::use_data(
popdata, regc2018, ta2018, sa22018, sa12018, mb2018, overwrite = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.