Code
epi_recipe(toy_epi_df) %>% check_enough_data(x, y, min_observations = 2 * n + 1,
drop_na = FALSE) %>% prep(toy_epi_df)
Condition
Error in `check_enough_data_core()`:
! The following columns don't have enough data to train: x and y.
Code
epi_recipe(toy_epi_df) %>% check_enough_data(x, y, min_observations = 2 * n - 1,
drop_na = TRUE) %>% prep(toy_epi_df)
Condition
Error in `check_enough_data_core()`:
! The following columns don't have enough data to train: x.
Code
epi_recipe(toy_epi_df) %>% check_enough_data(x, y, min_observations = n + 1,
epi_keys = "geo_value", drop_na = FALSE) %>% prep(toy_epi_df)
Condition
Error in `check_enough_data_core()`:
! The following columns don't have enough data to train: x and y.
Code
epi_recipe(toy_epi_df) %>% check_enough_data(x, y, min_observations = 2 * n - 3,
epi_keys = "geo_value", drop_na = TRUE) %>% prep(toy_epi_df)
Condition
Error in `check_enough_data_core()`:
! The following columns don't have enough data to train: x and y.
Code
forecaster %>% predict(new_data = toy_test_data %>% filter(time_value >
"2020-01-08"))
Condition
Error in `check_enough_data_core()`:
! The following columns don't have enough data to predict: x.
Code
epi_recipe(toy_epi_df) %>% step_epi_lag(x, lag = c(1, 2)) %>% check_enough_data(
all_predictors(), y, min_observations = 2 * n - 4) %>% prep(toy_epi_df)
Condition
Error in `check_enough_data_core()`:
! The following columns don't have enough data to train: no single column, but the combination of lag_1_x, lag_2_x, y.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.