View source: R/layer_point_from_distn.R
layer_point_from_distn | R Documentation |
This function adds a postprocessing layer to extract a point forecast from
a distributional forecast. NOTE: With default arguments, this will remove
information, so one should usually call this AFTER layer_quantile_distn()
or set the name
argument to something specific.
layer_point_from_distn(
frosting,
...,
type = c("median", "mean"),
name = NULL,
id = rand_id("point_from_distn")
)
frosting |
a |
... |
Unused, include for consistency with other layers. |
type |
character. Either |
name |
character. The name for the output column. The default |
id |
a random id string |
an updated frosting
postprocessor.
jhu <- covid_case_death_rates %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_naomit()
wf <- epi_workflow(r, quantile_reg(quantile_levels = c(.25, .5, .75))) %>%
fit(jhu)
f1 <- frosting() %>%
layer_predict() %>%
layer_quantile_distn() %>% # puts the other quantiles in a different col
layer_point_from_distn() %>% # mutate `.pred` to contain only a point prediction
layer_naomit(.pred)
wf1 <- wf %>% add_frosting(f1)
p1 <- forecast(wf1)
p1
f2 <- frosting() %>%
layer_predict() %>%
layer_point_from_distn() %>% # mutate `.pred` to contain only a point prediction
layer_naomit(.pred)
wf2 <- wf %>% add_frosting(f2)
p2 <- forecast(wf2)
p2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.