View source: R/layer_quantile_distn.R
layer_quantile_distn | R Documentation |
This function calculates quantiles when the prediction was distributional.
layer_quantile_distn(
frosting,
...,
quantile_levels = c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95),
truncate = c(-Inf, Inf),
name = ".pred_distn",
id = rand_id("quantile_distn")
)
frosting |
a |
... |
Unused, include for consistency with other layers. |
quantile_levels |
a vector of probabilities to extract |
truncate |
Do we truncate the distribution to an interval |
name |
character. The name for the output column. |
id |
a random id string |
Currently, the only distributional modes/engines are
quantile_reg()
smooth_quantile_reg()
rand_forest(mode = "regression") %>% set_engine("grf_quantiles")
If these engines were used, then this layer will grab out estimated (or extrapolated) quantiles at the requested quantile values.
an updated frosting
postprocessor. An additional column of predictive
quantiles will be added to the predictions.
jhu <- covid_case_death_rates %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_naomit()
wf <- epi_workflow(r, quantile_reg(quantile_levels = c(.25, .5, .75))) %>%
fit(jhu)
f <- frosting() %>%
layer_predict() %>%
layer_quantile_distn() %>%
layer_naomit(.pred)
wf1 <- wf %>% add_frosting(f)
p <- forecast(wf1)
p
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.