update.layer | R Documentation |
layer
This layer
method for update()
takes named arguments as ...
whose values
will replace the elements of the same name in the actual post-processing layer.
Analogous to update.step()
from the recipes
package.
## S3 method for class 'layer'
update(object, ...)
object |
A post-processing |
... |
Key-value pairs where the keys match up with names of elements in the layer, and the values are the new values to update the layer with. |
jhu <- covid_case_death_rates %>%
filter(time_value > "2021-11-01", geo_value %in% c("ak", "ca", "ny"))
r <- epi_recipe(jhu) %>%
step_epi_lag(death_rate, lag = c(0, 7, 14)) %>%
step_epi_ahead(death_rate, ahead = 7) %>%
step_epi_naomit()
wf <- epi_workflow(r, linear_reg()) %>% fit(jhu)
latest <- jhu %>% filter(time_value >= max(time_value) - 14)
# Specify a `forecast_date` that is greater than or equal to `as_of` date
f <- frosting() %>%
layer_predict() %>%
layer_add_forecast_date(forecast_date = "2022-05-31") %>%
layer_naomit(.pred)
wf1 <- wf %>% add_frosting(f)
p1 <- predict(wf1, latest)
p1
# Update forecast date
f$layers[[2]] <- update(f$layers[[2]], forecast_date = "2021-06-01")
# Need to still update workflow if only update a layer in frosting
wf2 <- wf %>% add_frosting(f)
wf2$post # Check that wf1 has update
p1 <- predict(wf2, latest)
p1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.