Code
dummy_ex %>% revision_summary() %>% print(n = 10, width = 300)
Message
Min lag (time to first version):
Output
min median mean max
0 days 1 days 1.6 days 4 days
Message
Fraction of epi_key+time_values with
No revisions:
* 3 out of 7 (42.86%)
Quick revisions (last revision within 3 days of the `time_value`):
* 4 out of 7 (57.14%)
Few revisions (At most 3 revisions for that `time_value`):
* 6 out of 7 (85.71%)
Fraction of revised epi_key+time_values which have:
Less than 0.1 spread in relative value:
* 1 out of 4 (25%)
Spread of more than 5.1 in actual value (when revised):
* 3 out of 4 (75%)
Days until within 20% of the latest value:
Output
min median mean max
0 days 3 days 6.9 days 19 days
# A tibble: 7 x 11
time_value geo_value n_revisions min_lag max_lag lag_near_latest spread
<date> <chr> <dbl> <drtn> <drtn> <drtn> <dbl>
1 2020-01-01 ak 4 2 days 19 days 19 days 101
2 2020-01-02 ak 1 4 days 5 days 4 days 9
3 2020-01-03 ak 0 3 days 3 days 3 days 0
4 2020-01-01 al 1 0 days 19 days 19 days 99
5 2020-01-02 al 0 0 days 0 days 0 days 0
6 2020-01-03 al 1 1 days 2 days 2 days 3
7 2020-01-04 al 0 1 days 1 days 1 days 0
rel_spread min_value max_value median_value
<dbl> <dbl> <dbl> <dbl>
1 0.990 1 102 6
2 0.09 91 100 95.5
3 NaN 0 0 0
4 0.99 1 100 50.5
5 0 1 1 1
6 0.75 1 4 2.5
7 0 9 9 9
Code
dummy_ex %>% revision_summary(drop_nas = FALSE) %>% print(n = 10, width = 300)
Message
Min lag (time to first version):
Output
min median mean max
0 days 1 days 1.4 days 4 days
Message
Fraction of all versions that are `NA`:
* 2 out of 19 (10.53%)
Fraction of epi_key+time_values with
No revisions:
* 2 out of 7 (28.57%)
Quick revisions (last revision within 3 days of the `time_value`):
* 4 out of 7 (57.14%)
Few revisions (At most 3 revisions for that `time_value`):
* 6 out of 7 (85.71%)
Fraction of revised epi_key+time_values which have:
Less than 0.1 spread in relative value:
* 2 out of 5 (40%)
Spread of more than 5.1 in actual value (when revised):
* 3 out of 5 (60%)
Days until within 20% of the latest value:
Output
min median mean max
0 days 3 days 6.9 days 19 days
# A tibble: 7 x 11
time_value geo_value n_revisions min_lag max_lag lag_near_latest spread
<date> <chr> <dbl> <drtn> <drtn> <drtn> <dbl>
1 2020-01-01 ak 6 2 days 19 days 19 days 101
2 2020-01-02 ak 1 4 days 5 days 4 days 9
3 2020-01-03 ak 0 3 days 3 days 3 days 0
4 2020-01-01 al 1 0 days 19 days 19 days 99
5 2020-01-02 al 0 0 days 0 days 0 days 0
6 2020-01-03 al 1 1 days 2 days 2 days 3
7 2020-01-04 al 1 0 days 1 days 1 days 0
rel_spread min_value max_value median_value
<dbl> <dbl> <dbl> <dbl>
1 0.990 1 102 5.5
2 0.09 91 100 95.5
3 NaN 0 0 0
4 0.99 1 100 50.5
5 0 1 1 1
6 0.75 1 4 2.5
7 0 9 9 9
Code
dummy_ex_weekly %>% revision_summary(drop_nas = FALSE) %>% print(n = 10, width = 300)
Message
Min lag (time to first version):
Output
min median mean max
0 weeks 1 weeks 1.4 weeks 4 weeks
Message
Fraction of all versions that are `NA`:
* 2 out of 19 (10.53%)
Fraction of epi_key+time_values with
No revisions:
* 2 out of 7 (28.57%)
Quick revisions (last revision within 1 week of the `time_value`):
* 2 out of 7 (28.57%)
Few revisions (At most 3 revisions for that `time_value`):
* 6 out of 7 (85.71%)
Fraction of revised epi_key+time_values which have:
Less than 0.1 spread in relative value:
* 2 out of 5 (40%)
Spread of more than 5.1 in actual value (when revised):
* 3 out of 5 (60%)
Weeks until within 20% of the latest value:
Output
min median mean max
0 weeks 3 weeks 6.9 weeks 19 weeks
# A tibble: 7 x 11
time_value geo_value n_revisions min_lag max_lag lag_near_latest spread
<date> <chr> <dbl> <drtn> <drtn> <drtn> <dbl>
1 2020-01-01 ak 6 2 weeks 19 weeks 19 weeks 101
2 2020-01-08 ak 1 4 weeks 5 weeks 4 weeks 9
3 2020-01-15 ak 0 3 weeks 3 weeks 3 weeks 0
4 2020-01-01 al 1 0 weeks 19 weeks 19 weeks 99
5 2020-01-08 al 0 0 weeks 0 weeks 0 weeks 0
6 2020-01-15 al 1 1 weeks 2 weeks 2 weeks 3
7 2020-01-22 al 1 0 weeks 1 weeks 1 weeks 0
rel_spread min_value max_value median_value
<dbl> <dbl> <dbl> <dbl>
1 0.990 1 102 5.5
2 0.09 91 100 95.5
3 NaN 0 0 0
4 0.99 1 100 50.5
5 0 1 1 1
6 0.75 1 4 2.5
7 0 9 9 9
Code
dummy_ex_yearmonthly %>% revision_summary(drop_nas = FALSE) %>% print(n = 10,
width = 300)
Message
Min lag (time to first version):
Output
min median mean max
0 1 1.4 4
Message
Fraction of all versions that are `NA`:
* 2 out of 19 (10.53%)
Fraction of epi_key+time_values with
No revisions:
* 2 out of 7 (28.57%)
Quick revisions (last revision within 1 month of the `time_value`):
* 2 out of 7 (28.57%)
Few revisions (At most 3 revisions for that `time_value`):
* 6 out of 7 (85.71%)
Fraction of revised epi_key+time_values which have:
Less than 0.1 spread in relative value:
* 2 out of 5 (40%)
Spread of more than 5.1 in actual value (when revised):
* 3 out of 5 (60%)
Months until within 20% of the latest value:
Output
min median mean max
0 3 6.9 19
# A tibble: 7 x 11
time_value geo_value n_revisions min_lag max_lag lag_near_latest spread
<mth> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2020 Jan ak 6 2 19 19 101
2 2020 Feb ak 1 4 5 4 9
3 2020 Mar ak 0 3 3 3 0
4 2020 Jan al 1 0 19 19 99
5 2020 Feb al 0 0 0 0 0
6 2020 Mar al 1 1 2 2 3
7 2020 Apr al 1 0 1 1 0
rel_spread min_value max_value median_value
<dbl> <dbl> <dbl> <dbl>
1 0.990 1 102 5.5
2 0.09 91 100 95.5
3 NaN 0 0 0
4 0.99 1 100 50.5
5 0 1 1 1
6 0.75 1 4 2.5
7 0 9 9 9
Code
dummy_ex_integerly %>% revision_summary(min_waiting_period = 60,
quick_revision = 3, drop_nas = FALSE) %>% print(n = 10, width = 300)
Message
Min lag (time to first version):
Output
min median mean max
0 1 1.4 4
Message
Fraction of all versions that are `NA`:
* 2 out of 19 (10.53%)
Fraction of epi_key+time_values with
No revisions:
* 2 out of 7 (28.57%)
Quick revisions (last revision within 3 time steps of the `time_value`):
* 4 out of 7 (57.14%)
Few revisions (At most 3 revisions for that `time_value`):
* 6 out of 7 (85.71%)
Fraction of revised epi_key+time_values which have:
Less than 0.1 spread in relative value:
* 2 out of 5 (40%)
Spread of more than 5.1 in actual value (when revised):
* 3 out of 5 (60%)
Time Steps until within 20% of the latest value:
Output
min median mean max
0 3 6.9 19
# A tibble: 7 x 11
time_value geo_value n_revisions min_lag max_lag lag_near_latest spread
<dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 ak 6 2 19 19 101
2 2 ak 1 4 5 4 9
3 3 ak 0 3 3 3 0
4 1 al 1 0 19 19 99
5 2 al 0 0 0 0 0
6 3 al 1 1 2 2 3
7 4 al 1 0 1 1 0
rel_spread min_value max_value median_value
<dbl> <dbl> <dbl> <dbl>
1 0.990 1 102 5.5
2 0.09 91 100 95.5
3 NaN 0 0 0
4 0.99 1 100 50.5
5 0 1 1 1
6 0.75 1 4 2.5
7 0 9 9 9
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.