tests/testthat/_snaps/revision-latency-functions.md

revision_summary works for a dummy dataset

Code
  dummy_ex %>% revision_summary() %>% print(n = 10, width = 300)
Message
  Min lag (time to first version):
Output
       min median     mean    max
    0 days 1 days 1.6 days 4 days
Message
  Fraction of epi_key+time_values with
  No revisions:
  * 3 out of 7 (42.86%)
  Quick revisions (last revision within 3 days of the `time_value`):
  * 4 out of 7 (57.14%)
  Few revisions (At most 3 revisions for that `time_value`):
  * 6 out of 7 (85.71%)
  Fraction of revised epi_key+time_values which have:
  Less than 0.1 spread in relative value:
  * 1 out of 4 (25%)
  Spread of more than 5.1 in actual value (when revised):
  * 3 out of 4 (75%)
  days until within 20% of the latest value:
Output
       min median     mean     max
    0 days 3 days 6.9 days 19 days
  # A tibble: 7 x 11
    time_value geo_value n_revisions min_lag max_lag time_near_latest spread
    <date>     <chr>           <dbl> <drtn>  <drtn>  <drtn>            <dbl>
  1 2020-01-01 ak                  4 2 days  19 days 19 days             101
  2 2020-01-02 ak                  1 4 days   5 days  4 days               9
  3 2020-01-03 ak                  0 3 days   3 days  3 days               0
  4 2020-01-01 al                  1 0 days  19 days 19 days              99
  5 2020-01-02 al                  0 0 days   0 days  0 days               0
  6 2020-01-03 al                  1 1 days   2 days  2 days               3
  7 2020-01-04 al                  0 1 days   1 days  1 days               0
    rel_spread min_value max_value median_value
         <dbl>     <dbl>     <dbl>        <dbl>
  1      0.990         1       102          6  
  2      0.09         91       100         95.5
  3    NaN             0         0          0  
  4      0.99          1       100         50.5
  5      0             1         1          1  
  6      0.75          1         4          2.5
  7      0             9         9          9
Code
  dummy_ex %>% revision_summary(drop_nas = FALSE) %>% print(n = 10, width = 300)
Message
  Min lag (time to first version):
Output
       min median     mean    max
    0 days 1 days 1.4 days 4 days
Message
  Fraction of all versions that are `NA`:
  * 2 out of 19 (10.53%)
  Fraction of epi_key+time_values with
  No revisions:
  * 2 out of 7 (28.57%)
  Quick revisions (last revision within 3 days of the `time_value`):
  * 4 out of 7 (57.14%)
  Few revisions (At most 3 revisions for that `time_value`):
  * 6 out of 7 (85.71%)
  Fraction of revised epi_key+time_values which have:
  Less than 0.1 spread in relative value:
  * 2 out of 5 (40%)
  Spread of more than 5.1 in actual value (when revised):
  * 3 out of 5 (60%)
  days until within 20% of the latest value:
Output
       min median     mean     max
    0 days 3 days 6.9 days 19 days
  # A tibble: 7 x 11
    time_value geo_value n_revisions min_lag max_lag time_near_latest spread
    <date>     <chr>           <dbl> <drtn>  <drtn>  <drtn>            <dbl>
  1 2020-01-01 ak                  6 2 days  19 days 19 days             101
  2 2020-01-02 ak                  1 4 days   5 days  4 days               9
  3 2020-01-03 ak                  0 3 days   3 days  3 days               0
  4 2020-01-01 al                  1 0 days  19 days 19 days              99
  5 2020-01-02 al                  0 0 days   0 days  0 days               0
  6 2020-01-03 al                  1 1 days   2 days  2 days               3
  7 2020-01-04 al                  1 0 days   1 days  1 days               0
    rel_spread min_value max_value median_value
         <dbl>     <dbl>     <dbl>        <dbl>
  1      0.990         1       102          5.5
  2      0.09         91       100         95.5
  3    NaN             0         0          0  
  4      0.99          1       100         50.5
  5      0             1         1          1  
  6      0.75          1         4          2.5
  7      0             9         9          9


cmu-delphi/epiprocess documentation built on Oct. 29, 2024, 5:37 p.m.