R/internal_pmi.R

#' pointwise mutual information: internal function (for use in pmi and npmi functions)
#' 
#' @param doc A character vector or list of character vectors
#' @param keyword A key word or phrase to test
#' @param window The number of context words to be displayed around the keyword Default 5
#' @param ngram The size of phrases the frequencies of which we are to test (so, unigram = 1, bigram = 2, trigram = 3 etc) 
#' @param remove_stopwords Remove stopwords, derived from Quanteda's list
#' @param min_count Collocates that occur fewer times than floor will be removed
#' @param span Whether to include a window's width of words to the left of the keyword, to the right or on both sides
#' @include get_freqs.R
#' @import tibble dplyr
#' @keywords mutual information, collocates, kwic

internal_pmi <- function(doc, keyword, window, ngram, remove_stopwords, min_count, span){
      
      freqs <- get_freqs(doc, keyword, window, ngram, remove_stopwords, span) %>%
            dplyr::filter(kwic_count >= as.numeric(min_count))
      # Return the keyword count from the get_freqs table
      keyword_count <- freqs %>% filter(ngram == keyword) %>% .$kwic_count
      # Calculate the pmi
  pmi <- freqs %>%
        tibble::add_column(wordcount = rep(sum(stringr::str_count(doc, "\\S+")), nrow(.))) %>% # Total wordcount
        tibble::add_column(keyword_count = rep(keyword_count, nrow(.))) %>% # Number of times the keyword occurs
        dplyr::mutate(probx = as.numeric(keyword_count/wordcount)) %>% #the probability of the keyword occuring
        dplyr::mutate(proby = as.numeric(doc_count/wordcount)) %>% # The probabilit of a collocate occurding across the full document
        dplyr::mutate(probxy = as.numeric(kwic_count/wordcount)) %>% # The probability of x and y collocating
        dplyr::mutate(pmi = as.numeric(log(probxy/(probx*proby))))

return(pmi)
}
cokelly/collocateR documentation built on May 13, 2019, 8:49 p.m.