test_that("vb_plot runs for discrete vbdf summary", {
library(dplyr)
data(anes)
anes_test <- filter(anes, year %in% sample(anes$year, 1))
cat(unique(anes_test$year))
vbsum <-
vb_discrete(anes_test, dv_vote3 = "vote_pres3",
dv_turnout = "voted", indep = c("race"),
weight = "weight", boot_iters = 10) %>%
bind_rows(.id = "year") %>%
vb_uncertainty()
tags <-
c("prob", "pr_turnout",
"pr_voterep", "pr_votedem",
"cond_rep", "net_rep") %>%
lapply(c("%s_mean", "%s_low", "%s_high"),
sprintf, .)
Map(
f = function(y, ymin, ymax) vb_plot(data = vbsum, x_col = "race",
y_col = y, ymin_col = ymin, ymax_col = ymax),
y = tags[[1]],
ymin = tags[[2]], ymax = tags[[3]]
)
})
test_that("vb_plot runs for discrete difference summary", {
library(dplyr)
data(anes)
anes_test <-
filter(anes,
year %in%
{sample(anes$year, 1) %>% c(. - 4, ., . + 4)})
cat(unique(anes_test$year))
anes_list <- split(anes_test, anes_test$year)
vbsum_diff <-
lapply(anes_list, vb_discrete, dv_vote3 = "vote_pres3",
dv_turnout = "voted", indep = c("race"),
weight = "weight", boot_iters = 10) %>%
bind_rows(.id = "year") %>%
vb_difference() %>%
vb_uncertainty(na.rm = TRUE)
tags <-
c("prob", "pr_turnout",
"pr_voterep", "pr_votedem",
"cond_rep", "net_rep") %>%
lapply(c("diff_%s_mean", "diff_%s_low", "diff_%s_high"),
sprintf, .)
Map(
f = function(y, ymin, ymax) vb_plot(data = vbsum_diff, x_col = "race",
y_col = y, ymin_col = ymin, ymax_col = ymax),
y = tags[[1]],
ymin = tags[[2]], ymax = tags[[3]]
)
# vb_plot(vbsum_diff,
# x_col = "race",
# y_col = "diff_prob_mean",
# ymin_col = "diff_prob_low", ymax_col = "diff_prob_high")
})
test_that("vb_plot runs for continuous vbdf summary", {
library(dplyr)
data(anes)
anes_test <- filter(anes, year %in% sample(anes$year, 1))
cat(unique(anes_test$year))
vbdf <-
filter(anes_test, !is.na(age)) %>%
vb_continuous(dv_vote3 = "vote_pres3",
dv_turnout = "voted", indep = c("age"),
weight = "weight", boot_iters = 10) %>%
bind_rows(.id = "year")
vbsum_cont <- vb_summary(vbdf)
vbdf$age_bin <- floor(vbdf$age / 10) * 10
vbsum_bin <- vb_summary(vbdf, type = "bin", bin_col = "age_bin")
tags <-
c("prob", "pr_turnout",
# "pr_voterep", "pr_votedem",
"cond_rep", "net_rep") %>%
lapply(c("%s_mean", "%s_low", "%s_high"),
sprintf, .)
Map(
f = function(y, ymin, ymax) vb_plot(data = vbsum_cont, x_col = "age",
y_col = y, ymin_col = ymin, ymax_col = ymax),
y = tags[[1]],
ymin = tags[[2]], ymax = tags[[3]]
)
Map(
f = function(y, ymin, ymax) vb_plot(data = vbsum_bin, x_col = "age_bin",
y_col = y, ymin_col = ymin, ymax_col = ymax),
y = tags[[1]],
ymin = tags[[2]], ymax = tags[[3]]
)
})
test_that("vb_plot runs for continuous difference summary", {
library(dplyr)
data(anes)
anes_test <-
filter(anes,
year %in%
{sample(anes$year, 1) %>% c(. - 4, ., . + 4)}) %>%
filter(!is.na(age))
cat(unique(anes_test$year))
anes_list <- split(anes_test, anes_test$year)
vbsum_diff <-
lapply(anes_list, vb_continuous, dv_vote3 = "vote_pres3",
dv_turnout = "voted", indep = c("age"), min_val = 17, max_val = 99,
weight = "weight", boot_iters = 10) %>%
bind_rows(.id = "year") %>%
vb_difference() %>%
vb_uncertainty()
tags <-
c("prob", "pr_turnout",
# "pr_voterep", "pr_votedem",
"cond_rep", "net_rep") %>%
lapply(c("diff_%s_mean", "diff_%s_low", "diff_%s_high"),
sprintf, .)
Map(
f = function(y, ymin, ymax) vb_plot(data = vbsum_diff, x_col = "age",
y_col = y, ymin_col = ymin, ymax_col = ymax),
y = tags[[1]],
ymin = tags[[2]], ymax = tags[[3]]
)
# vb_plot(vbsum_diff,
# x_col = "race",
# y_col = "diff_prob_mean",
# ymin_col = "diff_prob_low", ymax_col = "diff_prob_high")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.