Description Usage Details Value Ensemble Classifiers Differential Distance Based Classifiers Dictionary based Classifiers Shapelet based Classifiers Interval based Classifiers Time Series Classifier Weka Classifiers Examples
View source: R/tsc_classifiers.R
Run tsc_classifiers()
to obtain available classifiers
1 |
The following classifiers are available:
character
Names of available classifiers.
timeseriesweka.classifiers.ElasticEnsemble
Combination of nearest Neighbour (NN) classifiers that use elastic distance measures
Hyperparameters: None
timeseriesweka.classifiers.FlatCote
Collective of Transformation Ensembles (Bagnall et al.,2015)
Hyperparameters: None
Base-learners of ElasticEnsemble:
timeseriesweka.classifiers.ensembles.elastic_ensemble.WDTW1NN
Elastic Ensemble of Nearest Neighbour Algorithms:
Weighted Dynamic Time Warping 1 Nearest Neighbour
Hyperparameters: None
timeseriesweka.classifiers.ensembles.elastic_ensemble.ED1NN
Euclidean distance with 1 nearest neighbor
Hyperparameters: None
timeseriesweka.classifiers.ensembles.elastic_ensemble.DTW1NN
Dynamic time warping with 1 nearest neighbor
Hyperparameters:
setWindow
: double
range: [1, Inf]
timeseriesweka.classifiers.ensembles.elastic_ensemble.ERP1NN
edit distance with real penalty with 1 nearest neighbor
Hyperparameters: None
timeseriesweka.classifiers.ensembles.elastic_ensemble.LCSS1NN
longest common subsequence with 1 nearest neighbor
Hyperparameters: None
timeseriesweka.classifiers.ensembles.elastic_ensemble.TWE1NN
Time Warp Edit with 1 nearest neighbor
Hyperparameters: None
timeseriesweka.classifiers.ensembles.elastic_ensemble.MSM1NN
Move-Split-Merge with 1 nearest neighbor
Hyperparameters: None
timeseriesweka.classifiers.NN_CID
Complexity Invariant distance with k nearest neighbor
Hyperparameters: None
timeseriesweka.classifiers.DD_DTW
Derivative dynamic time warping
Hyperparameters: None
timeseriesweka.classifiers.DTD_C
Derivative transform distance
Hyperparameters: None
timeseriesweka.classifiers.BOSS
Bag of SFA Symbols
Hyperparameters:
setMaxEnsembleSize
: integer(1)
range: [1, Inf]
timeseriesweka.classifiers.BagOfPatterns
Bag of Patterns
Hyperparameters: None
timeseriesweka.classifiers.SAX_1NN
Symbolic Aggregate Approximation
Hyperparameters: None
timeseriesweka.classifiers.SAXVSM
Symbolic Aggregate Approximation - Vector Space Model
Hyperparameters: None
timeseriesweka.classifiers.ShapeletTransformClassifier
Shapelet transformation that separates the Shapelet discovery from the classifier by
finding the top k Shapelets in a single run
Hyperparameters:
setTransformType
: character(1)
values: "univariate","uni","shapeletd","shapeleti"
setNumberOfShapelets
: integer(1)
range: [1, Inf]
timeseriesweka.classifiers.FastShapelets
Fast Shapelets (FS)
Hyperparameters: None
timeseriesweka.classifiers.LearnShapelets
Learned Shapelets (LS):
Hyperparameters: None
timeseriesweka.classifiers.TSF
Time Series Forest (Deng et al.,2013)
Hyperparameters:
setNumTrees
: integer(1)
range: [1, Inf]
timeseriesweka.classifiers.TSBF
Time Series Bag of Features (TSBF)
Hyperparameters:
setZLevel
: double(1)
timeseriesweka.classifiers.LPS
Learned Pattern Similarity (LPS)
Hyperparameters: None
timeseriesweka.classifiers.DTW_kNN
specialization of kNN that can only be used with the efficient DTW distance
Hyperparameters:
setMaxR
: double(1)
range: \[0, 1] set max window size
timeseriesweka.classifiers.FastDTW_1NN
fast Dynamic time warping with 1 nearest neighbor
Hyperparameters:
setR
: double(1)
timeseriesweka.classifiers.SlowDTW_1NN
compare with FastDTW_1NN
Hyperparameters:
setR
: double(1)
Several WEKA classifiers have been implemented in the Time-Series Classification
Bake-off.
The use of those classifiers is discouraged from within TSClassification,
but nonetheless implemented for completeness.
We advise to use the official implementations from package RWeka
(https://cran.r-project.org/web/packages/RWeka/index.html) for greater
flexibility and improved support for setting hyperparameters.
weka.classifiers.functions.Logistic
weka.classifiers.bayes.BayesNet
weka.classifiers.bayes.NaiveBayes
weka.classifiers.functions.Logistic
weka.classifiers.functions.MultilayerPerceptron
weka.classifiers.functions.SMO
weka.classifiers.meta.RotationForest
weka.classifiers.trees.J48
weka.classifiers.trees.RandomForest
1 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.