#' Return available classifiers
#'
#' Run `tsc_classifiers()` to obtain available classifiers
#'
#' The following classifiers are available:
#'
#' @section Ensemble Classifiers:
#'
#' \itemize{
#'
#' \item `timeseriesweka.classifiers.ElasticEnsemble` \cr
#' Combination of nearest Neighbour (NN) classifiers that use elastic distance measures \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.FlatCote` \cr
#' Collective of Transformation Ensembles (Bagnall et al.,2015) \cr
#' Hyperparameters: *None*
#'
#' Base-learners of ElasticEnsemble: \cr
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.WDTW1NN` \cr
#' Elastic Ensemble of Nearest Neighbour Algorithms: \cr
#' Weighted Dynamic Time Warping 1 Nearest Neighbour \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.ED1NN` \cr
#' Euclidean distance with 1 nearest neighbor \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.DTW1NN` \cr
#' Dynamic time warping with 1 nearest neighbor \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setWindow`: `double` range: \[1, Inf\]
#' }
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.ERP1NN` \cr
#' edit distance with real penalty with 1 nearest neighbor \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.LCSS1NN` \cr
#' longest common subsequence with 1 nearest neighbor \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.TWE1NN` \cr
#' Time Warp Edit with 1 nearest neighbor \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.ensembles.elastic_ensemble.MSM1NN` \cr
#' Move-Split-Merge with 1 nearest neighbor \cr
#' Hyperparameters: *None*
#'
#'
#' }
#'
#' @section Differential Distance Based Classifiers:
#' \itemize{
#'
#' \item `timeseriesweka.classifiers.NN_CID` \cr
#' Complexity Invariant distance with k nearest neighbor \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.DD_DTW` \cr
#' Derivative dynamic time warping \cr
#' Hyperparameters: *None*
#'
#' \item `timeseriesweka.classifiers.DTD_C` \cr
#' Derivative transform distance \cr
#' Hyperparameters: *None*
#'
#' }
#'
#' @section Dictionary based Classifiers:
#' \itemize{
#' \item `timeseriesweka.classifiers.BOSS` \cr
#' Bag of SFA Symbols \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setMaxEnsembleSize`: `integer(1)` range: \[1, Inf\]
#' }
#'
#' \item `timeseriesweka.classifiers.BagOfPatterns` \cr
#' Bag of Patterns \cr
#' Hyperparameters: *None* \cr
#'
#' \item `timeseriesweka.classifiers.SAX_1NN` \cr
#' Symbolic Aggregate Approximation \cr
#' Hyperparameters: *None* \cr
#'
#' \item `timeseriesweka.classifiers.SAXVSM` \cr
#' Symbolic Aggregate Approximation - Vector Space Model \cr
#' Hyperparameters: *None* \cr
#' }
#'
#' @section Shapelet based Classifiers:
#' \itemize{
#' \item `timeseriesweka.classifiers.ShapeletTransformClassifier` \cr
#' Shapelet transformation that separates the Shapelet discovery from the classifier by
#' finding the top k Shapelets in a single run \cr
#' Hyperparameters:
#' \itemize{
#' \item `setTransformType`: character(1) \cr
#' values: "univariate","uni","shapeletd","shapeleti"
#' \item `setNumberOfShapelets`: `integer(1)` range: \[1, Inf\]
#' }
#'
#' \item `timeseriesweka.classifiers.FastShapelets` \cr
#' Fast Shapelets (FS) \cr
#' Hyperparameters: *None* \cr
#'
#' \item `timeseriesweka.classifiers.LearnShapelets` \cr
#' Learned Shapelets (LS): \cr
#' Hyperparameters: *None* \cr
#'
#' }
#'
#' @section Interval based Classifiers:
#' \itemize{
#' \item `timeseriesweka.classifiers.TSF` \cr
#' Time Series Forest (Deng et al.,2013) \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setNumTrees`: `integer(1)` range: \[1, Inf\]
#' }
#'
#' \item `timeseriesweka.classifiers.TSBF` \cr
#' Time Series Bag of Features (TSBF) \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setZLevel`: `double(1)`
#' }
#'
#' \item `timeseriesweka.classifiers.LPS` \cr
#' Learned Pattern Similarity (LPS) \cr
#' Hyperparameters: *None* \cr
#' }
#'
#' @section Time Series Classifier:
#' \itemize{
#' \item `timeseriesweka.classifiers.DTW_kNN` \cr
#' specialization of kNN that can only be used with the efficient DTW distance \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setMaxR`: `double(1)` range: \\[0, 1\] set max window size
#' }
#'
#' \item `timeseriesweka.classifiers.FastDTW_1NN` \cr
#' fast Dynamic time warping with 1 nearest neighbor \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setR`: `double(1)`
#' }
#'
#' \item `timeseriesweka.classifiers.SlowDTW_1NN` \cr
#' compare with FastDTW_1NN \cr
#' Hyperparameters: \cr
#' \itemize{
#' \item `setR`: `double(1)`
#' }
#' }
#'
#'
#' @section Weka Classifiers:
#' Several WEKA classifiers have been implemented in the Time-Series Classification
#' Bake-off. \cr
#' The use of those classifiers is discouraged from within TSClassification,
#' but nonetheless implemented for completeness. \cr
#' We advise to use the official implementations from package RWeka
#' (\url{https://cran.r-project.org/web/packages/RWeka/index.html}) for greater
#' flexibility and improved support for setting hyperparameters. \cr
#' \itemize{
#' \item weka.classifiers.functions.Logistic
#' \item weka.classifiers.bayes.BayesNet
#' \item weka.classifiers.bayes.NaiveBayes
#' \item weka.classifiers.functions.Logistic
#' \item weka.classifiers.functions.MultilayerPerceptron
#' \item weka.classifiers.functions.SMO
#' \item weka.classifiers.meta.RotationForest
#' \item weka.classifiers.trees.J48
#' \item weka.classifiers.trees.RandomForest
#' }
#'
#' @return [`character`] Names of available classifiers.
#' @examples
#' tsc_classifiers()
#' @export
tsc_classifiers = function() {
c(
# Ensemble Classifiers
"timeseriesweka.classifiers.ensembles.elastic_ensemble.ED1NN",
"timeseriesweka.classifiers.ensembles.elastic_ensemble.DTW1NN",
"timeseriesweka.classifiers.ensembles.elastic_ensemble.ERP1NN",
"timeseriesweka.classifiers.ensembles.elastic_ensemble.LCSS1NN",
"timeseriesweka.classifiers.ensembles.elastic_ensemble.WDTW1NN",
"timeseriesweka.classifiers.ensembles.elastic_ensemble.TWE1NN",
"timeseriesweka.classifiers.ensembles.elastic_ensemble.MSM1NN",
"timeseriesweka.classifiers.ElasticEnsemble",
"timeseriesweka.classifiers.FlatCote",
#Differential Distance Based Classifiers
"timeseriesweka.classifiers.NN_CID",
"timeseriesweka.classifiers.DD_DTW",
"timeseriesweka.classifiers.DTD_C",
#Dictionary Based Classifiers
"timeseriesweka.classifiers.BagOfPatterns",
"timeseriesweka.classifiers.SAX_1NN",
"timeseriesweka.classifiers.SAXVSM",
"timeseriesweka.classifiers.BOSS",
#Shapelet Based Classifiers
"timeseriesweka.classifiers.FastShapelets",
"timeseriesweka.classifiers.ShapeletTransformClassifier",
"timeseriesweka.classifiers.LearnShapelets",
#Interval Based Classifiers
"timeseriesweka.classifiers.TSF",
"timeseriesweka.classifiers.TSBF",
"timeseriesweka.classifiers.LPS",
# Weka Classifiers
"weka.classifiers.bayes.BayesNet",
"weka.classifiers.bayes.NaiveBayes",
"weka.classifiers.functions.Logistic",
"weka.classifiers.functions.MultilayerPerceptron",
"weka.classifiers.functions.SMO",
"weka.classifiers.meta.RotationForest",
"weka.classifiers.trees.J48",
"weka.classifiers.trees.RandomForest",
# single classifier
"timeseriesweka.classifiers.DTW_kNN",
"timeseriesweka.classifiers.FastDTW_1NN",
"timeseriesweka.classifiers.RISE",
"timeseriesweka.classifiers.SlowDTW_1NN"
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.