# Use rsofun driver data from FluxDataKit and filter to good-quality sequences
library(tidyverse)
library(FluxDataKit)
# Read rsofun driver data
p_model_fluxnet_drivers <- read_rds("~/data_2/FluxDataKit/v3.4/zenodo_upload/rsofun_driver_data_v3.4.2.rds")
# Extract forcing time series
ddf <- p_model_fluxnet_drivers |>
dplyr::select(-params_siml, -site_info) |>
tidyr::unnest(forcing)
# Exclude croplands and wetlands
sites <- FluxDataKit::fdk_site_info |>
dplyr::filter(!(igbp_land_use %in% c("CRO", "WET"))) |>
# add information about good quality sequences
dplyr::left_join(
FluxDataKit::fdk_site_fullyearsequence,
by = "sitename"
) |>
dplyr::filter(!drop_gpp & !drop_le)
# filter data to retain only good quality sequences
ddf <- ddf |>
dplyr::left_join(
sites |>
dplyr::select(
sitename,
year_start_gpp,
year_end_gpp,
year_start_le,
year_end_le
),
by = join_by(sitename)
) |>
dplyr::mutate(year = year(date)) |>
dplyr::filter(
year >= year_start_gpp &
year >= year_start_le &
year <= year_end_gpp &
year <= year_end_le
) |>
# For CH-Dav, retain only data pre-2010
dplyr::filter(!(sitename == "CH-Dav" & year >= 2010)) |>
dplyr::select(-year_start_gpp, -year_start_le, -year_end_gpp, -year_end_le, -year)
# Re-create rsofun driver data with clean data
drivers <- ddf |>
dplyr::group_by(sitename) |>
tidyr::nest() |>
dplyr::rename(forcing = data) |>
dplyr::left_join(
p_model_fluxnet_drivers |>
dplyr::select(sitename, params_siml, site_info),
by = "sitename"
) |>
dplyr::select(sitename, params_siml, site_info, forcing) |>
dplyr::ungroup()
saveRDS(drivers, file = here::here("data/drivers.rds"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.