Man pages for conroylau/lpinfer
An R Package for Inference in Linear Programs

asmatCoerces non-'sparseMatrix' objects as 'matrix'
beta.bsEvaluate the bootstrap betas
beta.productComputes vector products
beta.r.computeComputes the restricted estimator in the 'fsst' procedure
beta.star.qpComputes the starred components of \widehat{\bm{beta}}
bisec.evalEvaluation of test statistic and check if the point has been...
bisec.printPrint messages in bisection procedure and store results
bs.assignAuxiliary function in the bootstrap replications
bs.indexAuxiliary function to return the indices for bootstrap...
check.AbCheck function: constraint matrix and the corresponding rhs...
check.betatgtCheck function: check if 'beta.tgt' is within the logical...
check.betatgt.lpConstruct the linear program for the function 'check.betatgt'
check.booleanCheck function: boolean variable
check.coresCheck function: check the number of cores
check.dataframeCheck function: data frame
check.datafunctionCheck function: passing data to function
check.errormsgGeneral error for checking the objects
check.funcCheck function: function
check.initbCheck function: check brackets
check.lpmodelCheck function: 'lpmodel'
check.lpobjectsCheck function: matrices and vectors in 'lpmodel'
check.matrixCheck function: matrix
check.nonnegativeCheck function: nonnegative number
check.normCheck function: norm
check.numericCheck function: numeric
check.numrangeCheck function: range of a variable
check.positiveCheck function: positive number
check.positiveintegerCheck function: positive integer
check.samplesizeCheck function: sample size 'n' if 'data' is 'NULL'
check.solverCheck function: solvers
checkupdate.matrixrootChecks whether the matrix square root is correct
check.vectorCheck function: vector
chorussellConducts inference using the Cho-Russell procedure
chorussell.bsBootstrap procedure for the 'chorussell' procedure
chorussell.bs.fnCarries out one bootstrap replication for the Cho-Russell...
chorussell.checkChecks and updates the input in the 'chorussell' procedure
chorussell.evalComputes the required object in the 'chorussell' procedure
chorussell.lpComputes the (1-alpha)-confidence interval in the...
chorussell.lp.fnComputes whether the candidate bounds satisfy the constraints...
chorussell.lp.fn.unbdComputes whether the candidate bounds satisfy the constraints...
chorussell.ptChecks if 'beta.tgt' is inside the (1-alpha)-confidence...
chorussell.simpSimplifies the candidates to be considered in 'chorussell'
chorussell.simp.fnChecks one candidate in 'chorussell'
ci.bisectionBisection method for constructing confidence intervals
ci.inoutDetermine whether a point is inside the confidence interval...
consolidate.invertciConsolidates and prints the 'summary' table in 'invertci'
construct.cv.tableGeneral function to create a table of critical values
cplexapi.optimLP and QP solver by 'cplexAPI'
dkqsConducts inference using the DKQS procedure
dkqs.bsBootstrap procedure for the DKQS procedure
dkqs.bs.fnCarries out one bootstrap replication for the 'dkqs'...
dkqs.checkChecks and updates the input in 'dkqs'
dkqs.qlpFormulates and solves the linear and quadratic programs in...
dmatrixconvertCoerces a 'dgeMatrix' as a 'sparseMatrix'
error.id.matchMatches the id of the error messages
estboundsEstimate bounds with shape restrictions
estbounds2.L1Estimates the bounds with shape constraints (stage 2 with...
estbounds2.L2Estimates the bounds with shape constraints (Stage 2 with...
estbounds.checkChecks and updates the input in 'estbounds'
estbounds.originalComputes the true bounds subjected to shape constraints
fsstConducts inference using the FSST procedure
fsst.beta.bsComputing the bootstrap estimates of 'beta.obs'
fsst.beta.bs.fnComputes one bootstrap estimates for 'beta.obs'.
fsst.beta.star.bsComputes the bootstrap estimates of the starred version of...
fsst.beta.star.bs.fnComputes one bootstrap estimates of 'beta.star' and 'x.star'
fsst.checkChecks and updates the input in 'fsst'
fsst.cone.bsComputes the bootstrap estimates of the cone component of the...
fsst.cone.bs.fnComputes one bootstrap estimate of the cone component of the...
fsst.cone.lpComputes the solution to the cone problem
fsst.cv.tableWrapper for the 'construct.cv.table' function for the 'fsst'...
fsst.label.lambdaIndicates the data-driven 'lambda' in the output
fsst.lambdaData-driven choice of 'lambda' in the 'fsst' procedure
fsst.pvalCalculates the p-value for the 'fsst' procedure
fsst.rangeComputes the range component of the test statistics
fsst.range.bsBootstrap procedure of computing the range component
fsst.range.bs.fnComputes one bootstrap estimate for the range component of...
fsst.weight.matrixComputes the weighting matrix in the 'fsst' procedure
full.beta.bsConstruct the full beta vector in the 'fsst' procedure
gurobi.optimLP and QP solver by 'Gurobi'
infeasible.betatgt.warningDisplay warning message for infeasible 'beta.tgt'
infeasible.msg.betatgtGeneral message for infeasible 'beta.tgt'
infeasible.pval.msgWrapper for 'infeasible.msg.betatgt'
invertciConstructs confidence interval
invertci.checkChecks and updates the input of the function 'invertci'
invertci.show.paramPrint the parameters used in the bisection method
limsolve.optimLP and QP solver by 'limSolve'
lpmodelDefines a 'lpmodel' object
lpmodel.anylistCheck if there is any list in the 'lpmodel' object
lpmodel.beta.evalEvaluates the point estimate and asymptotic variance of...
lpmodel.evalEvaluates an object inside 'lpmodel'
lpmodel.extractlistExtracts the bootstrap replications of the 'lpmodel' object
lpmodel.naturalDefine an 'lpmodel.natural' form object
lpmodel.updateCombines deterministic components and one bootstrap estimate...
lpm.printPrint the 'lpmodel' or 'lpmodel.natural' object
lpsolveapi.optimLP solver by 'lpSolveAPI'
mincriterionFirst-stage estimation procedure for 'estbounds'
mincriterion.checkChecks and updates the input in 'mincriterion'
objective.functionComputes the coefficient terms of the objective functions
post.bsAuxiliary function for the post-bootstrap procedure
print.chorussellPrint results from 'chorussell'
print.dkqsPrint results from 'dkqs'
print.estboundsPrint results from 'estbounds'
print.fsstPrint results from 'fsst'
print.invertciPrint results from 'invertci'
print.invertci_multiplePrint results from 'invertci' with multiple significance...
print.invertci_singlePrint results from 'invertci' with a single significance...
print.lpmodelPrint the 'lpmodel' object
print.lpmodel.naturalPrint the 'lpmodel.natural' object
print.mincriterionPrint results from 'mincriterion'
print.subsamplePrint results from the 'subsample' procedure
pvalCalculates the p-value
quan.statFunction that computes the basic quantiles
rcplex.optimLP and QP solver by 'Rcplex'
sampledataSimulated data
sigma.summationComputes the asymptotic variance estimator
smatrixconvertCoerces a 'sparseMatrix' as a 'matrix'
standard.formObtain standard form of linear program
standard.lpmodelObtains standard form of linear program for constraints in...
subsampleConducts inference using the subsampling procedure
subsample.bsBootstrap procedure for the 'subsample' procedure
subsample.bs.fnCarries out one bootstrap replication for the subsampling...
subsample.checkChecks and updates the input in 'subsample'
subsample.probFormulates and solves the 'subsample' problem
summary.bisection.printPrint results in constructing bounds in bisection method
summary.chorussellSummary of results from 'chorussell'
summary.dkqsSummary of results from 'dkqs'
summary.estboundsSummary of results from 'estbounds'
summary.fsstSummary of results from 'fsst'
summary.invertciSummary of results from 'invertci'
summary.invertci_multipleSummary of results from 'invertci' for multiple significance...
summary.invertci_singleSummary of results from 'invertci' for a single significance...
summary.lpmodelSummary of the 'lpmodel' object
summary.lpmodel.naturalSummary of the 'lpmodel.natural' object
summary.mincriterionSummary of results from 'mincriterion'
summary.subsampleSummary of results from the 'subsample' procedure
tau.constraintsCreates the constraints for the linear program of 'tau' in...
conroylau/lpinfer documentation built on Oct. 25, 2024, 4 a.m.