asmat | Coerces non-'sparseMatrix' objects as 'matrix' |
beta.bs | Evaluate the bootstrap betas |
beta.product | Computes vector products |
beta.r.compute | Computes the restricted estimator in the 'fsst' procedure |
beta.star.qp | Computes the starred components of \widehat{\bm{beta}} |
bisec.eval | Evaluation of test statistic and check if the point has been... |
bisec.print | Print messages in bisection procedure and store results |
bs.assign | Auxiliary function in the bootstrap replications |
bs.index | Auxiliary function to return the indices for bootstrap... |
check.Ab | Check function: constraint matrix and the corresponding rhs... |
check.betatgt | Check function: check if 'beta.tgt' is within the logical... |
check.betatgt.lp | Construct the linear program for the function 'check.betatgt' |
check.boolean | Check function: boolean variable |
check.cores | Check function: check the number of cores |
check.dataframe | Check function: data frame |
check.datafunction | Check function: passing data to function |
check.errormsg | General error for checking the objects |
check.func | Check function: function |
check.initb | Check function: check brackets |
check.lpmodel | Check function: 'lpmodel' |
check.lpobjects | Check function: matrices and vectors in 'lpmodel' |
check.matrix | Check function: matrix |
check.nonnegative | Check function: nonnegative number |
check.norm | Check function: norm |
check.numeric | Check function: numeric |
check.numrange | Check function: range of a variable |
check.positive | Check function: positive number |
check.positiveinteger | Check function: positive integer |
check.samplesize | Check function: sample size 'n' if 'data' is 'NULL' |
check.solver | Check function: solvers |
checkupdate.matrixroot | Checks whether the matrix square root is correct |
check.vector | Check function: vector |
chorussell | Conducts inference using the Cho-Russell procedure |
chorussell.bs | Bootstrap procedure for the 'chorussell' procedure |
chorussell.bs.fn | Carries out one bootstrap replication for the Cho-Russell... |
chorussell.check | Checks and updates the input in the 'chorussell' procedure |
chorussell.eval | Computes the required object in the 'chorussell' procedure |
chorussell.lp | Computes the (1-alpha)-confidence interval in the... |
chorussell.lp.fn | Computes whether the candidate bounds satisfy the constraints... |
chorussell.lp.fn.unbd | Computes whether the candidate bounds satisfy the constraints... |
chorussell.pt | Checks if 'beta.tgt' is inside the (1-alpha)-confidence... |
chorussell.simp | Simplifies the candidates to be considered in 'chorussell' |
chorussell.simp.fn | Checks one candidate in 'chorussell' |
ci.bisection | Bisection method for constructing confidence intervals |
ci.inout | Determine whether a point is inside the confidence interval... |
consolidate.invertci | Consolidates and prints the 'summary' table in 'invertci' |
construct.cv.table | General function to create a table of critical values |
cplexapi.optim | LP and QP solver by 'cplexAPI' |
dkqs | Conducts inference using the DKQS procedure |
dkqs.bs | Bootstrap procedure for the DKQS procedure |
dkqs.bs.fn | Carries out one bootstrap replication for the 'dkqs'... |
dkqs.check | Checks and updates the input in 'dkqs' |
dkqs.qlp | Formulates and solves the linear and quadratic programs in... |
dmatrixconvert | Coerces a 'dgeMatrix' as a 'sparseMatrix' |
error.id.match | Matches the id of the error messages |
estbounds | Estimate bounds with shape restrictions |
estbounds2.L1 | Estimates the bounds with shape constraints (stage 2 with... |
estbounds2.L2 | Estimates the bounds with shape constraints (Stage 2 with... |
estbounds.check | Checks and updates the input in 'estbounds' |
estbounds.original | Computes the true bounds subjected to shape constraints |
fsst | Conducts inference using the FSST procedure |
fsst.beta.bs | Computing the bootstrap estimates of 'beta.obs' |
fsst.beta.bs.fn | Computes one bootstrap estimates for 'beta.obs'. |
fsst.beta.star.bs | Computes the bootstrap estimates of the starred version of... |
fsst.beta.star.bs.fn | Computes one bootstrap estimates of 'beta.star' and 'x.star' |
fsst.check | Checks and updates the input in 'fsst' |
fsst.cone.bs | Computes the bootstrap estimates of the cone component of the... |
fsst.cone.bs.fn | Computes one bootstrap estimate of the cone component of the... |
fsst.cone.lp | Computes the solution to the cone problem |
fsst.cv.table | Wrapper for the 'construct.cv.table' function for the 'fsst'... |
fsst.label.lambda | Indicates the data-driven 'lambda' in the output |
fsst.lambda | Data-driven choice of 'lambda' in the 'fsst' procedure |
fsst.pval | Calculates the p-value for the 'fsst' procedure |
fsst.range | Computes the range component of the test statistics |
fsst.range.bs | Bootstrap procedure of computing the range component |
fsst.range.bs.fn | Computes one bootstrap estimate for the range component of... |
fsst.weight.matrix | Computes the weighting matrix in the 'fsst' procedure |
full.beta.bs | Construct the full beta vector in the 'fsst' procedure |
gurobi.optim | LP and QP solver by 'Gurobi' |
infeasible.betatgt.warning | Display warning message for infeasible 'beta.tgt' |
infeasible.msg.betatgt | General message for infeasible 'beta.tgt' |
infeasible.pval.msg | Wrapper for 'infeasible.msg.betatgt' |
invertci | Constructs confidence interval |
invertci.check | Checks and updates the input of the function 'invertci' |
invertci.show.param | Print the parameters used in the bisection method |
limsolve.optim | LP and QP solver by 'limSolve' |
lpmodel | Defines a 'lpmodel' object |
lpmodel.anylist | Check if there is any list in the 'lpmodel' object |
lpmodel.beta.eval | Evaluates the point estimate and asymptotic variance of... |
lpmodel.eval | Evaluates an object inside 'lpmodel' |
lpmodel.extractlist | Extracts the bootstrap replications of the 'lpmodel' object |
lpmodel.natural | Define an 'lpmodel.natural' form object |
lpmodel.update | Combines deterministic components and one bootstrap estimate... |
lpm.print | Print the 'lpmodel' or 'lpmodel.natural' object |
lpsolveapi.optim | LP solver by 'lpSolveAPI' |
mincriterion | First-stage estimation procedure for 'estbounds' |
mincriterion.check | Checks and updates the input in 'mincriterion' |
objective.function | Computes the coefficient terms of the objective functions |
post.bs | Auxiliary function for the post-bootstrap procedure |
print.chorussell | Print results from 'chorussell' |
print.dkqs | Print results from 'dkqs' |
print.estbounds | Print results from 'estbounds' |
print.fsst | Print results from 'fsst' |
print.invertci | Print results from 'invertci' |
print.invertci_multiple | Print results from 'invertci' with multiple significance... |
print.invertci_single | Print results from 'invertci' with a single significance... |
print.lpmodel | Print the 'lpmodel' object |
print.lpmodel.natural | Print the 'lpmodel.natural' object |
print.mincriterion | Print results from 'mincriterion' |
print.subsample | Print results from the 'subsample' procedure |
pval | Calculates the p-value |
quan.stat | Function that computes the basic quantiles |
rcplex.optim | LP and QP solver by 'Rcplex' |
sampledata | Simulated data |
sigma.summation | Computes the asymptotic variance estimator |
smatrixconvert | Coerces a 'sparseMatrix' as a 'matrix' |
standard.form | Obtain standard form of linear program |
standard.lpmodel | Obtains standard form of linear program for constraints in... |
subsample | Conducts inference using the subsampling procedure |
subsample.bs | Bootstrap procedure for the 'subsample' procedure |
subsample.bs.fn | Carries out one bootstrap replication for the subsampling... |
subsample.check | Checks and updates the input in 'subsample' |
subsample.prob | Formulates and solves the 'subsample' problem |
summary.bisection.print | Print results in constructing bounds in bisection method |
summary.chorussell | Summary of results from 'chorussell' |
summary.dkqs | Summary of results from 'dkqs' |
summary.estbounds | Summary of results from 'estbounds' |
summary.fsst | Summary of results from 'fsst' |
summary.invertci | Summary of results from 'invertci' |
summary.invertci_multiple | Summary of results from 'invertci' for multiple significance... |
summary.invertci_single | Summary of results from 'invertci' for a single significance... |
summary.lpmodel | Summary of the 'lpmodel' object |
summary.lpmodel.natural | Summary of the 'lpmodel.natural' object |
summary.mincriterion | Summary of results from 'mincriterion' |
summary.subsample | Summary of results from the 'subsample' procedure |
tau.constraints | Creates the constraints for the linear program of 'tau' in... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.