Description Usage Arguments Value See Also Examples
This is a main function of this package. It refits each model multiple times after performing a non-parametric bootstrap on the data. This is used to ultimately derive confidence intervals on parameter estimates.
| 1 2 | boot_all_models(models_list, data, n_boot = 40L, xtol_rel = 1e-07,
  maxtime = Inf, n_CPU = 2L, save_rda = FALSE, seed = 1L)
 | 
| models_list | The list of fitted models | 
| data | The dataset to be used | 
| n_boot | The number of bootstrapped dataset to generate and fit | 
| xtol_rel | Tolerance parameter for nloptr | 
| maxtime | Maximum time (in seconds) allowed for nloptr to fit; use Inf for best fit! | 
| n_CPU | The number of CPU to use for fitting the bootstrapped datasets | 
| save_rda | A boolean indicating whether saving the model as a *.rda object or not | 
| seed | An integer giving the seed for the (pseudo-)random generator | 
The list containing all the fits.
| 1 2 3 4 5 | ## Warning: increase n_boot and maxtime for real fits!
Models_boot_test <- boot_all_models(models_list = Models[1:2],
                                    data = SurvEles_small,
                                    n_boot = 2L, maxtime = 1)
Models_boot_test
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.