.estimate_Re_EpiEstim_sliding_window | R Documentation |
The Re value reported for time t corresponds to the value estimated when assuming that is Re is constant over e.g. (T-3, T-2, T-1, T), for a sliding window of 4 time steps.
.estimate_Re_EpiEstim_sliding_window(
incidence_input,
import_incidence_input = NULL,
minimum_cumul_incidence = 12,
estimation_window = 3,
mean_serial_interval = 4.8,
std_serial_interval = 2.3,
mean_Re_prior = 1,
output_HPD = FALSE
)
incidence_input |
Module input object. List with two elements:
|
import_incidence_input |
NULL or module input object. List with two elements:
If not NULL, this data represents recorded imported cases.
And then |
minimum_cumul_incidence |
Numeric value.
Minimum number of cumulated infections before starting the Re estimation.
Default is |
estimation_window |
Use with |
mean_serial_interval |
Numeric positive value. |
std_serial_interval |
Numeric positive value. |
mean_Re_prior |
Numeric positive value. |
output_HPD |
Boolean. If TRUE, return the highest posterior density interval with the output. |
If output_HPD = FALSE
,
value is a module object (a list of the same kind as incidence_input
).
The values
element of the list then contains the Re estimates.
If output_HPD = TRUE
, a list of three module objects is returned.
Re_estimate
contains the Re estimates.
Re_highHPD
and Re_lowHPD
contain
the higher and lower boundaries of the HPD interval,
as computed by estimate_R
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.