loadFullPredResults = function(path) {
# path = paste("results2", path, sep = "/")
# init output
resultDf = NULL
datasets = list.dirs(path = path, full.names = F, recursive = F)
for (dataset in datasets) {
dataset_path = paste(path, dataset, sep = "/")
# get classifier
classifiers = list.dirs(path = dataset_path, full.names = F, recursive = F)
for (classifier in classifiers) {
# get iterations
iterations = list.dirs(path = paste(dataset_path, classifier, sep = "/"), full.names = F, recursive = F)
# print(iterations)
for (iteration in iterations) {
# build current path
iteration_path = paste(dataset_path, classifier, iteration, sep = "/")
aggr_file_path = list.files(iteration_path)
agg_file = aggr_file_path[startsWith(aggr_file_path, "filter")]
# browser()
# check if done.txt exists
if (length(agg_file) > 0) {
# load result of iteration
result_temp = readr::read_delim(
paste(iteration_path, agg_file, sep = "/"),
";"
)
# if(!"fw.abs" %in% colnames(result_temp)) {
# next
# }
# set classifier
result_temp$classifier = classifier
result_temp$dataset = dataset
result_temp = result_temp %>%
dplyr::filter(ids == "full_predictor") %>%
dplyr::group_by(ids, classifier, dataset) %>%
dplyr::summarise(acc = 1 - mean(metric), feats = mean(numFeatures))
# append to results
if (is.null(resultDf)) {
resultDf = result_temp
}
else {
resultDf = rbind(resultDf, result_temp)
}
}
}
}
}
# browser()
resultDf = resultDf %>%
dplyr::group_by(classifier, dataset) %>%
dplyr::summarise(acc = mean(acc), feats = mean(feats))
return(resultDf)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.