knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(tidymodels) library(treesnip) # saveRDS(bm, "inst/benchmark_parallel_processing_vignette.rds") bm <- readr::read_rds(system.file("benchmark_parallel_processing_vignette.rds", package = "treesnip"))
bm %>% mutate( nrow = paste("nrows:", scales::number(nrow, 1)), models_trained = (tune_grid ^ 4) * cv_folds, max = map_dbl(time, max)/60, threads = glue::glue("Threads: {threads} (workers: {workers})") ) %>% ggplot(aes(x = models_trained, y = median, colour = factor(threads))) + facet_wrap(~nrow, scales = "free_y") + geom_pointrange(aes(ymin = min, ymax = max)) + geom_line() + labs(x = "Models trained", y = "Time elapsed (minutes)", colour = "Threads (Workers)", title = "engine:lightgbm - CV-folds:3 - hyperparameters: 4- trees: 600")
workers*threads = 8
)library(tidymodels) library(treesnip)
# main function to tune_grid with given benchmark parameters execute_tune_grid <- function(df, threads, workers, cv_folds, tune_grid, engine = "lightgbm") { ############################################################## df_splits <- vfold_cv(df, v = cv_folds) df_rec <- recipe(mpg ~ ., data = df) df_model <- boost_tree( mtry = 3, trees = 600, sample_size = 0.7, min_n = tune(), tree_depth = tune(), learn_rate = tune(), loss_reduction = tune() ) %>% set_mode("regression") %>% set_engine(as.character(engine), nthread = threads) df_wf <- workflow() %>% add_model(df_model) %>% add_recipe(df_rec) ############################################################## doParallel::registerDoParallel(workers) tg <- tune_grid(df_wf, df_splits, grid = tune_grid) tg } # parameters parameters <- expand.grid( engine = "lightgbm", cv_folds = 3, tune_grid = c(2, 5), nrow = c(1e3, 1e6), threads = c(1, 2, 4, 8) ) %>% mutate( workers = 8 %/% threads ) # bench::mark set.seed(1) bm <- bench::press( { Sys.sleep(3) df <- mtcars %>% sample_n(nrow, replace = TRUE) bench::mark( execute_tune_grid(df, threads, workers, cv_folds, tune_grid, engine), check = FALSE, iterations = 3, memory = FALSE, filter_gc = FALSE, time_unit = "m" ) }, .grid = parameters )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.