cmdpref: MDPREF model

Description Usage Arguments Details Value Author(s) References Examples

View source: R/fmdpref_1.R

Description

Metric and non-metric MDPREF model

Usage

1
cmdpref(pref, ndim = 2, monotone = FALSE, tor = 1e-08, maxit = 50)

Arguments

pref

Preference data matrix. Rows as objects and columns as subjects. Small value for less preferred and large value for more preferred.

ndim

Number of dimensions.

monotone

TRUE for Kruskal monotonic transformation. FALSE for metric scale.

tor

tolerance for monotonic transformation.

maxit

maximum number of interactions for monotonic transformation.

Details

Metric scale:
Singular decomposition is applied to data matrix S.
S = ULV', X = U*sqrt(n-1), Y = V*sqrt(L)/sqrt(n-1), n = no. of objects.

Non-metric scale:
Kruskal monotonic transformation is applied to each subject vector by opscale(level=2,...) in optiscale package.
Metric MDPREF is applied to the transformed data.

Value

An object of class "mdpref".

score

Object coordinates

corr

Subject vectors

d

Singular values

fitted

fitted preference matrix

tpref

transformed preference matrix

stress

Stress I value under monotonic transformation

Author(s)

Chi-wai Kwan

References

Carroll, J. D. (1972). “Individual Differences and Multidimensional Scaling.” In Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, vol. 1, edited by R. N. Shepard, A. K. Romney, and S. B. Nerlove, 105–155. New York: Seminar Press.

Kruskal, Joseph B. (1964) “Nonmetric Multidimensional Scaling: A Numerical Method.” Psychometrika 29: 115-129

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
library(lattice)
library(optiscale)
library(cmdpref)
#rank order of preferences of 5 objects for 4 subjects
mydata

fit<-cmdpref(pref=mydata,monotone=TRUE,maxit=100)
summary(fit)

#biplot() arguments are applicable
plot(fit,xlim=c(-2,2),cex=1)

cwkwanstat/cmdpref documentation built on Oct. 23, 2021, 8:21 p.m.