Description Usage Arguments Details Value Author(s) References Examples
Metric and non-metric MDPREF model
1 |
pref |
Preference data matrix. Rows as objects and columns as subjects. Small value for less preferred and large value for more preferred. |
ndim |
Number of dimensions. |
monotone |
TRUE for Kruskal monotonic transformation. FALSE for metric scale. |
tor |
tolerance for monotonic transformation. |
maxit |
maximum number of interactions for monotonic transformation. |
Metric scale:
Singular decomposition is applied to data matrix S.
S = ULV', X = U*sqrt(n-1),
Y = V*sqrt(L)/sqrt(n-1), n = no. of objects.
Non-metric scale:
Kruskal monotonic transformation is applied to each subject vector by opscale(level=2,...) in optiscale package.
Metric MDPREF is applied to the transformed data.
An object of class "mdpref".
score |
Object coordinates |
corr |
Subject vectors |
d |
Singular values |
fitted |
fitted preference matrix |
tpref |
transformed preference matrix |
stress |
Stress I value under monotonic transformation |
Chi-wai Kwan
Carroll, J. D. (1972). “Individual Differences and Multidimensional Scaling.” In Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, vol. 1, edited by R. N. Shepard, A. K. Romney, and S. B. Nerlove, 105–155. New York: Seminar Press.
Kruskal, Joseph B. (1964) “Nonmetric Multidimensional Scaling: A Numerical Method.” Psychometrika 29: 115-129
1 2 3 4 5 6 7 8 9 10 11 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.