README.md

rareMETALS

rareMETALS is an R-package for performing single or gene-level tests for detecting rare variant associations. For questions regarding the use of this package, please contact Dajiang Liu(dajiang.liu at outlook dot com) or Gonçalo Abecasis(goncalo at umich dot edu), or follow Feedback/Contact. The same methodology is also implemented in command line tools. Please see here

Table of Contents

Downlaod and installation

Documentation

An R automatically generated documentation is available here: rareMETALS-manual.pdf. Please note that it is still rough in places. Please let us know if you see any problems. Thanks!

Forum

I have created a google group for discussion on the usage and for bug reports etc. As you can see, there are numerous updates to the package since its release, thanks to the valuable suggestions from many users. We are committed to continue to update the package and improve its functionalities. If you find any issues to the package and think that the discussions may also benefit others, please post them to the user group. Here is the link to the discussion group

Supported Functionalities

Exemplar Dataset

Four datasets are useful to get you started on how to use rareMETALS R package for meta-analyses of gene-level association test - Media:study1.MetaScore.assoc.gz - Media:study2.MetaScore.assoc.gz - Media:study1.MetaCov.assoc.gz - Media:study2.MetaCov.assoc.gz

How to Generate Summary Association Statistics and Prepare Them for Meta-analysis

Meta-analysis summary association statistics can be generated by both RVTESTS and RAREMETALWORKER. Please refer to their documentations for generating summary association statistics. Once you have generated summary association statistics, you need to compress them with bgzip, and index them with tabix. If you use RAREMETALWORKER, the command should be like: If you use RVTESTS, your command should be

bgzip study1.MetaScore.assoc
tabix -s 1 -b 2 -e 2 -S 1 study1.MetaScore.assoc.gz
tabix -s 1 -b 2 -e 2 -S 1 study1.MetaCov.assoc.gz

:point_right: NOTE: Tabix 1.X does not seem to support the indexing for generic tab-delimited files. To index the file, please use tabix 0.2.5 or earlier versions.

A Simple Tutorial for Using functions

Using the rareMETALS.single function

rareMETALS.single function allow you to perform meta-analyses for single variant association tests. The summary association statistics are combined using Mantel Haenszel test statistic. The details are described in our method paper: Meta-analysis of gene-level tests of rare variant association, Nature Genetics, 46, 200–204 (2014) doi: 10.1038/ng.2852. Assume that you have a set of single variant score statistics and their covariance matrices. Example:

cov.file <- c("study1.MetaCov.assoc.gz","study2.MetaCov.assoc.gz")
score.stat.file <- c("study1.MetaScore.assoc.gz","study2.MetaScore.assoc.gz")

library(rareMETALS)
res <- rareMETALS.single(score.stat.file,cov.file=NULL,range="19:11200093-11201275",alternative="two.sided",ix.gold=1,callrate.cutoff=0,hwe.cutoff=0)

###result can be explored as below###
 > names(res)
 [1] "p.value"            "ref"                "alt"                "integratedData"     "raw.data"          
 [6] "clean.data"         "statistic"          "direction.by.study" "anno"               "maf"               
 [11] "QC.by.study"        "no.sample"          "beta1.est"          "beta1.sd"           "hsq.est"           
 [16] "nearby"             "pos"    
 > print(res$pos)
 [1] "19:11200093" "19:11200213" "19:11200235" "19:11200272" "19:11200282" "19:11200309" "19:11200412" "19:11200419"
 [9] "19:11200431" "19:11200442" "19:11200475" "19:11200508" "19:11200514" "19:11200557" "19:11200579" "19:11200728"
 [17] "19:11200753" "19:11200754" "19:11200806" "19:11200839" "19:11200840" "19:11200896" "19:11201124" "19:11201259"
 [25] "19:11201274" "19:11201275"
 > print(res$p.value)
 [1] 0.551263675 0.056308558 0.172481571 0.734935815 0.922326732 0.053804524 0.886985353 0.903835162 0.005280228 0.266575301
 [11] 0.196122312 0.157114376 0.951477852 0.840523624 0.759482777 0.112743041 0.414147263 0.825877149 0.006090142 0.096474975
 [21] 0.096474975 0.956407850 0.038234190 0.253512486 0.550935361 0.482315038```

Using the rareMETALS.single.group function

Dataset used to get the refaltList: Media:groupFile.txt.gz

res.site<-read.table("groupFile.txt",header=T)
refaltList <- list(pos=paste(res.site[,1],res.site[,2],sep=":"),
              ref=res.site$AF,alt=res.site$ALT,af=res.site$AF,af.diff.max=0.5,checkAF=T)
res31<-rareMETALS.single.group(score.stat.file,cov.file=NULL, range="19:11200093-11201275", refaltList,
                       alternative = c("two.sided"), callrate.cutoff = 0,
                       hwe.cutoff = 0, correctFlip = TRUE, analyzeRefAltListOnly = TRUE)

###result can be explored as below###
 > names(res31)
 [1] "p.value"            "ref"                "alt"                "integratedData"     "raw.data"          
 [6] "clean.data"         "statistic"          "direction.by.study" "anno"               "maf"               
 [11] "maf.byStudy"        "maf.maxdiff.vec"    "ix.maf.maxdiff.vec" "maf.sd.vec"         "no.sample.mat"     
 [16] "no.sample"          "beta1.est"          "beta1.sd"           "QC.by.study"        "hsq.est"           
 [21] "nearby"             "cochranQ.stat"      "cochranQ.df"        "cochranQ.pVal"      "I2"                
 [26] "log.mat"            "pos"               
 > print(res31$pos)
 [1] "19:11200093" "19:11200213" "19:11200235" "19:11200272" "19:11200282" "19:11200309" "19:11200412" "19:11200419"
 [9] "19:11200431" "19:11200442" "19:11200475" "19:11200508" "19:11200514" "19:11200557" "19:11200579" "19:11200728"
 [17] "19:11200753" "19:11200754" "19:11200806" "19:11200839" "19:11200840" "19:11200896" "19:11201124" "19:11201259"
 [25] "19:11201274" "19:11201275"
 > print(res31$p.value)
 [1]        NA        NA        NA        NA 0.9223267        NA        NA        NA        NA        NA        NA        NA
 [13]        NA        NA        NA        NA        NA        NA        NA        NA        NA        NA        NA        NA
 [25]        NA        NA

Using the rareMETALS.range function

res <- rareMETALS.range(score.stat.file,cov.file,range="19:11200093-11201275",range.name="LDLR",test = "GRANVIL",maf.cutoff = 0.05,alternative = c("two.sided"),ix.gold = 1,out.digits = 4,callrate.cutoff = 0,hwe.cutoff = 0,max.VT = NULL)
> print(res$res.out)
 gene.name.out p.value.out statistic.out no.site.out beta1.est.out
[1,] "LDLR"        "0.6064"    "0.2654"      "25"        "-0.01729"
     beta1.sd.out maf.cutoff.out direction.burden.by.study.out
[1,] "0.03357"    "0.05"         "--"
     direction.meta.single.var.out top.singlevar.pos top.singlevar.refalt
[1,] "---++-+--+-+++++--+++++-+"   "19:11200431"     "C/T"
     top.singlevar.pval top.singlevar.af
[1,] "0.004709"         "0.01038"

 pos.ref.alt.out       
[1,] "19:11200093/T/C,19:11200213/G/A,19:11200235/G/A,19:11200272/C/A,19:11200282/G/A,19:11200309/C/A,19:11200412/C/T,19:11200419/C/T,19:11200431/C/T,19:1120\
0442/G/A,19:11200475/C/G,19:11200508/G/A,19:11200514/C/T,19:11200557/G/A,19:11200579/C/T,19:11200728/C/T,19:11200753/T/C,19:11200754/G/A,19:11200806/C/T,19:1\
1200839/T/A,19:11200840/C/A,19:11200896/C/T,19:11201259/G/C,19:11201274/C/T,19:11201275/A/T"

gene.name.out p.value.out statistic.out no.site.out beta1.est.out beta1.sd.out maf.cutoff.out direction.burden.by.study.out direction.meta.single.var.out top.singlevar.pos
[1,] "LDLR"        "0.01916"   "5.487"       "25"        "-0.3575"     "0.1526"     "0.05"         "--"                          "---++-+--+-+++++--+++++-+"   "19:11200309"    
    top.singlevar.refalt top.singlevar.pval top.singlevar.af
[1,] "C/A"                "0.01047"          "0.01538"       

 pos.ref.alt.out                     
[1,]"19:11200093/T/C,19:11200213/G/A,19:11200235/G/A,19:11200272/C/A,19:11200282/G/A,19:11200309/C/A,19:11200412/C/T,19:11200419/C/T,19:11200431/C/T,19:11200442/G/A,19:11200475/C/G,
 19:11200508/G/A,19:11200514/C/T,19:11200557/G/A,19:11200579/C/T,19:11200728/C/T,19:11200753/T/C,19:11200754/G/A,19:11200806/C/T,19:11200839/T/A,19:11200840/C/A,19:11200896/C/T,
 19:11201259/G/C,19:11201274/C/T,19:11201275/A/T"

More detailed results can be found in a list res$res.list

Using the rareMETALS.range.group function

res32<-rareMETALS.range.group(score.stat.file, cov.file, range="19:11200093-11201275", range.name="LDLR",
                      test = "GRANVIL", refaltList, maf.cutoff = 1,
                      alternative = c("two.sided"), out.digits = 4,
                      callrate.cutoff = 0, hwe.cutoff = 0, max.VT = NULL,
                      correctFlip = TRUE, analyzeRefAltListOnly = TRUE)
> print(res32$res.out)
   gene.name.out N.out  p.value.out statistic.out no.site.out beta1.est.out beta1.sd.out maf.cutoff.out
[1,] "LDLR"        "2504" "0.8629"    "0.0298"      "1"         "0.1764"      "1.044"      "1"           
    direction.burden.by.study.out direction.meta.single.var.out top.singlevar.pos top.singlevar.refalt top.singlevar.pval
[1,] "+-"                          "+"                           "19:11200282"     "3/1"                "0.8629"          
    top.singlevar.af pos.ref.alt.out  
[1,] "0.000599"       "19:11200282/G/A"

Using the conditional.rareMETALS.single

It is well known that, owing to linkage disequilibrium, one or more common causal variants can result in shadow association signals at other nearby common variants, use RareMETALS to perform conditional analysis for single variant tests example:

 res<-conditional.rareMETALS.single(candidate.variant.vec=c("19:11200282","19:11200309"), score.stat.file, cov.file,
                             known.variant.vec=c("19:11200754","19:11200806","19:11200839"), maf.cutoff=0.05, no.boot =1000,
                             alternative = c("two.sided"), ix.gold = 1,
                             out.digits = 4, callrate.cutoff = 0, hwe.cutoff = 0,
                             p.value.known.variant.vec = NA, anno.known.variant.vec = NA,
                             anno.candidate.variant.vec = NA) 
> print(res$res.out)
 POS           REF ALT PVALUE    AF      BETA_EST  BETA_SD   DIRECTION_BY_STUDY ANNO  POS_REF_ALT_ANNO_KNOWN                                    
[1,] "19:11200282" "G" "A" "0.5825"  "0.000599" "0.5616"  "1.044"    "-="               "N/A" "19:11200754/G/A/NA,19:11200806/C/T/NA,19:11200839/T/A/NA"
[2,] "19:11200309" "C" "A" "0.01484" "0.01538"  "-0.3615" "0.02201"  "+="               "N/A" "19:11200754/G/A/NA,19:11200806/C/T/NA,19:11200839/T/A/NA"

Using the conditional.rareMETALS.range

example:

res<-conditional.rareMETALS.range(range.name = "LDLR", score.stat.file, cov.file,
                            candidate.variant.vec=c("19:11200282","19:11200309"), known.variant.vec=c("19:11200754","19:11200806","19:11200839"), test = "GRANVIL", maf.cutoff=0.05,
                            alternative = c("two.sided"), ix.gold = 1,
                            out.digits = 4, callrate.cutoff = 0, hwe.cutoff = 0, max.VT = NULL)
> print(res$res.out)
gene.name.out p.value.out statistic.out no.site.out beta1.est.out beta1.sd.out maf.cutoff.out direction.burden.by.study.out direction.meta.single.var.out
 [1,] "LDLR"        "0.01961"   "5.446"       "2"         "-0.3429"     "0.1469"     "0.05"         "-?"                          "+-"                         
    top.singlevar.pos top.singlevar.refalt top.singlevar.pval top.singlevar.af pos.ref.alt.out                   pos.ref.alt.known.out                            
 [1,] "19:11200309"     "C/A"                "0.01484"          "0.01538"        "19:11200282/G/A,19:11200309/C/A" "19:11200754/G/A,19:11200806/C/T,19:11200839/T/A"

More detailed results can be found in a list res$res.list

Change Log

Feedback/Contact

Questions and requests can be sent to Github issue page (link) or Dajiang Liu (dajiang.liu@outlook.com) and Fang Chen(fchen1@hmc.psu.edu)



dajiangliu/rareMETALS documentation built on May 25, 2019, 4:21 p.m.