ast-moment | R Documentation |
The mean, standard deviation, skewness, kurtosis functions, as well as the raw and central moments of AST distribution
astMean(
mu = 0,
s = 1,
alpha = 0.5,
nu1 = Inf,
nu2 = Inf,
pars = NULL,
method = c("analytical", "numerical")
)
astMoment(
moment = c("mean", "sd", "var", "skew", "kurt"),
mu = 0,
s = 1,
alpha = 0.5,
nu1 = Inf,
nu2 = Inf,
pars = NULL,
method = c("analytical", "numerical"),
type = c("excess", "regular")
)
astMoments(
mu = 0,
s = 1,
alpha = 0.5,
nu1 = Inf,
nu2 = Inf,
pars = NULL,
method = c("analytical", "numerical"),
type = c("excess", "regular")
)
astRawMoment(
n,
mu = 0,
s = 1,
alpha = 0.5,
nu1 = Inf,
nu2 = Inf,
pars = NULL,
method = c("analytical", "numerical")
)
astCentralMoment(
n,
mu,
s,
alpha,
nu1,
nu2,
pars = NULL,
method = c("analytical", "numerical")
)
mu |
location parameter |
s |
scale parameter, |
alpha |
skewness parameter, |
nu1 |
degrees of freedom / tail parameter for the left tail, |
nu2 |
degrees of freedom / tail parameter for the right tail, |
pars |
a vector that contains mu, s, alpha, nu1, nu2, if pars is specified, mu, s, alpha, nu1, nu2 should not be specified |
method |
method used to calculate the moment(s), one of 'analytical' and 'numerical' |
moment |
the moment to be calculated, one of 'mean', 'sd', 'var', 'skew', 'kurt' |
type |
type of kurtosis calculated, one of 'excess' and 'regular' |
n |
order of (raw/central) moment to be calculated |
Function astMoment
calculates one of mean, standard deviation, skewness and kurtosis of the distribution,
while astMoment
calculates all 4 of them.
Function astRawMoment
returns E[X^n]
,
while function astCentralMoment
returns E[(X-\mu)^n]
The moments for AST follow the general rule of student t distribution,
mean is only defined for nu > 1,
variance/standard deviation is finite when nu > 2, infinite when 1 < nu < 2, otherwise undefined,
skewness is defined when nu > 3,
kurtosis is finite when nu > 4, infinite when 2 < nu <= 4, otherwise undefined.
Zhu, D., & Galbraith, J. W. (2010). A generalized asymmetric Student-t distribution with application to financial econometrics. Journal of Econometrics, 157(2), 297-305. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1016/j.jeconom.2010.01.013")}
# The parameter values are specially set for a volatile portfolio.
pars <- c(0.12, 0.6, 0.6, 3, 5)
astMoment("sd", pars = pars, method = "numerical")
astMoments(pars = pars)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.