gat-moment | R Documentation |
The mean, standard deviation, skewness, kurtosis functions, as well as the raw and central moments of GAT distribution
gatMean(
mu = 0,
phi = 1,
alpha = 0.5,
r = 2,
c = 2,
nu = Inf,
pars = NULL,
method = c("analytical", "numerical")
)
gatMoment(
moment = c("mean", "sd", "var", "skew", "kurt"),
mu = 0,
phi = 1,
alpha = 0.5,
r = 2,
c = 2,
nu = Inf,
pars = NULL,
method = c("analytical", "numerical"),
type = c("excess", "regular")
)
gatMoments(
mu = 0,
phi = 1,
alpha = 0.5,
r = 2,
c = 2,
nu = Inf,
pars = NULL,
method = c("analytical", "numerical"),
type = c("excess", "regular")
)
gatRawMoment(
n,
mu = 0,
phi = 1,
alpha = 0.5,
r = 2,
c = 2,
nu = Inf,
pars = NULL,
method = c("analytical", "numerical")
)
gatCentralMoment(
n,
mu = 0,
phi = 1,
alpha = 0.5,
r = 2,
c = 2,
nu = Inf,
pars = NULL,
method = c("analytical", "numerical")
)
mu |
location parameter |
phi |
scale parameter, |
alpha |
skewness parameter, |
r |
tail power asymmetry parameter |
c |
scale asymmetry parameter |
nu |
degrees of freedom / tail parameter |
pars |
a vector that contains mu, phi, alpha, r, c, nu, if pars is specified, mu, phi, alpha, r, c, nu should not be specified |
method |
method used to calculate the moment(s), one of 'analytical' and 'numerical' |
moment |
the moment to be calculated, one of 'mean', 'sd', 'skew', 'kurt' |
type |
type of kurtosis calculated, one of 'excess' and 'regular' |
n |
order of (raw/central) moment to be calculated |
Function gatMoment
calculates one of mean, standard deviation, skewness and kurtosis of the distribution,
while gatMoment
calculates all 4 of them.
Function gatRawMoment
returns E[X^n]
,
while function gatCentralMoment
returns E[(X-\mu)^n]
The moments for GAT follow the general rule of student t distribution,
mean is only defined for nu > 1,
variance/standard deviation is finite when nu > 2, infinite when 1 < nu < 2, otherwise undefined,
skewness is defined when nu > 3,
kurtosis is finite when nu > 4, infinite when 2 < nu <= 4, otherwise undefined.
Baker, R. D. (2016). A new asymmetric generalisation of the t-distribution. arXiv preprint arXiv:1606.05203. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.48550/arXiv.1606.05203")}
# The parameter values are specially set for a volatile portfolio.
pars <- c(0.12, 0.6, 1.5, 1.2, 2, 5)
gatMoment("sd", pars = pars, method = "numerical")
gatMoments(pars = pars)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.