knitr::opts_chunk$set(echo = TRUE) library(ggplot2) library(ggthemes) library(cowplot) library(kableExtra)
Call me Ishmael. Some years ago -- never mind how long precisely -- having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world. It is a way I have of driving off the spleen and regulating the circulation. Whenever I find myself growing grim about the mouth; whenever it is a damp, drizzly November in my soul; whenever I find myself involuntarily pausing before coffin warehouses, and bringing up the rear of every funeral I meet; and especially whenever my hypos get such an upper hand of me, that it requires a strong moral principle to prevent me from deliberately stepping into the street, and methodically knocking people's hats off -- then, I account it high time to get to sea as soon as I can. This is my substitute for pistol and ball. With a philosophical flourish Cato throws himself upon his sword; I quietly take to the ship. There is nothing surprising in this. If they but knew it, almost all men in their degree, some time or other, cherish very nearly the same feelings towards the ocean with me.
One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin. He lay on his armour-like back, and if he lifted his head a little he could see his brown belly, slightly domed and divided by arches into stiff sections. The bedding was hardly able to cover it and seemed ready to slide off any moment. His many legs, pitifully thin compared with the size of the rest of him, waved about helplessly as he looked.
She emptied her mind of all thought of herself, of her children, of all anger, of all rebellion, of all questions. Then with a profound and deeply willed desire to believe, to be heard, as she had done every day since the murder of Carlo Rizzi, she said the necessary prayers for the soul of Michael Corleone.
In the criminal justice system, the people are represented by two separate yet equally important groups. The police who investigate crime and the district attorneys who prosecute the offenders. These are their stories.
In 1972, a crack commando unit was sent to prison by a military court for a crime they didn't commit. These men promptly escaped from a maximum security stockade to the Los Angeles underground. Today, still wanted by the government they survive as soldiers of fortune. If you have a problem, if no one else can help, and if you can find them....maybe you can hire The A-Team.
There was only one catch and that was Catch-22, which specified that a concern for one's own safety in the face of dangers that were real and immediate was the process of a rational mind. Orr was crazy and could be grounded. All he had to do was ask; and as soon as he did, he would no longer be crazy and would have to fly more missions. Orr would be crazy to fly more missions and sane if he didn't, but if he was sane, he had to fly them. If he flew them, he was crazy and didn't have to; but if he didn't want to, he was sane and had to. Yossarian was moved very deeply by the absolute simplicity of this clause of Catch-22 and let out a respectful whistle. **"That's some catch, that Catch-22," he observed. "It's the best there is," Doc Daneeka agreed.
x<-c(2.5, 2.5, 2.5, 2.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 12.5, 12.5, 12.5, 12.5) y<-c(3.5, 9.0, 9.0, 13.0, 3.5, 3.5, 9.0, 9.0, 13.0, 13.0, 3.5, 3.5, 3.5, 9.0)
cor.test(x, y, method="kendall") tau.b<-unname(cor.test(x, y, method="kendall")$estimate) tau.b
Tau<-function(x, y){ xy<-data.frame(x,y) #append x and y vectors x_ties<-table(x)[table(x)>1] #List of x ties y_ties<-table(y)[table(y)>1] #List of y of ties xy_ties<-table(xy)[table(xy)>1] #List ofxy ties t_xi<-unname(table(x)[table(x)>1]) #Count T_x sizes of ties t_yi<-unname(table(y)[table(y)>1]) #Count T_y sizes of ties t_xyi<-unname(table(xy)[table(xy)>1]) #Count T_xy sizes of ties Tx<-sum((t_xi*(t_xi-1))/2) #Calculate Tx Ty<-sum((t_yi*(t_yi-1))/2) #Calculate Ty Txy<-sum(t_xyi*(t_xyi-1)/2) #Calculate Txy n<-length(x) n_max<-n*(n-1)/2-Tx-Ty+Txy xy_ranks<-data.frame(xrank=rank(xy$x, ties.method="average"), yrank=rank(xy$y, ties.method="average")) xy_c<-xy_ranks[order(x, -y),] # for n_c, sort on ascending x then descending y xy$concordant<-rep(NA, nrow(xy)) for (i in 1:nrow(xy-1)){ xy$concordant[i]<-sum(xy_c$yrank[(i+1):length(xy_c$yrank)]>xy_c$yrank[i]) } nc<-sum(xy$concordant, na.rm=TRUE) nd<-n_max-nc Tau<-(nc-nd)/n_max list(Tau=Tau, "Tied x Values"=x_ties, "Tied y Values"=y_ties, "Tied xy Values"=xy_ties, nc=nc, nd=nd, nmax=n_max) }
Phi<-function(x, y, a.prior=1, b.prior=1, hdi.width=0.95){ xy<-data.frame(x,y) #append x and y vectors t_xi<-unname(table(x)[table(x)>1]) #Counting T_x sizes of ties t_yi<-unname(table(y)[table(y)>1]) #Counting T_y sizes of ties Tx<-sum((t_xi*(t_xi-1))/2) #Calculating Tx Ty<-sum((t_yi*(t_yi-1))/2) #Calculating Ty t_xyi<-unname(table(xy)[table(xy)>1]) #Calculating txyi Txy<-sum(t_xyi*(t_xyi-1)/2) #Calculating Txy n<-length(x) n_max<-n*(n-1)/2-Tx-Ty+Txy xy_ranks<-data.frame(xrank=rank(xy$x, ties.method="average"), yrank=rank(xy$y, ties.method="average")) xy_c<-xy_ranks[order(x, -y),] # for n_c, sort on ascending x then descending y xy$concordant<-rep(NA, nrow(xy)) for (i in 1:nrow(xy-1)){ xy$concordant[i]<-sum(xy_c$yrank[(i+1):length(xy_c$yrank)]>xy_c$yrank[i]) } nc<-sum(xy$concordant, na.rm=TRUE) nd<-n_max-nc Tau<-(nc-nd)/n_max p_c<-(Tau+1)/2 a.post<-a.prior+nc b.post<-b.prior+nd post.median<-qbeta(0.5, a.post, b.post) post.hdi.lower<-qbeta((1-hdi.width)/2, a.post, b.post) post.hdi.upper<-qbeta(1-(1-hdi.width)/2, a.post, b.post) list(tau=Tau, sample.p=p_c, alpha=a.post, beta=b.post, post.median=post.median, post.hdi.lower=post.hdi.lower, post.hdi.upper=post.hdi.upper) }
Phi_star<-function(x, y, a.prior=1, b.prior=1, hdi.width=0.95, fitting.parameters){ m<-fitting.parameters xy<-data.frame(x,y) #append x and y vectors t_xi<-unname(table(x)[table(x)>1]) #Counting T_x sizes of ties t_yi<-unname(table(y)[table(y)>1]) #Counting T_y sizes of ties Tx<-sum((t_xi*(t_xi-1))/2) #Calculating Tx Ty<-sum((t_yi*(t_yi-1))/2) #Calculating Ty t_xyi<-unname(table(xy)[table(xy)>1]) #Calculating txyi Txy<-sum(t_xyi*(t_xyi-1)/2) #Calculating Txy n<-length(x) n_max<-n*(n-1)/2-Tx-Ty+Txy xy_ranks<-data.frame(xrank=rank(xy$x, ties.method="average"), yrank=rank(xy$y, ties.method="average")) xy_c<-xy_ranks[order(x, -y),] # for n_c, sort on ascending x then descending y xy$concordant<-rep(NA, nrow(xy)) for (i in 1:nrow(xy-1)){ xy$concordant[i]<-sum(xy_c$yrank[(i+1):length(xy_c$yrank)]>xy_c$yrank[i]) } nc<-sum(xy$concordant, na.rm=TRUE) nd<-n_max-nc Tau<-(nc-nd)/n_max Tau_star<-(nc_star-nd)/(((n*(n-1))/2)-Tx-Ty+Txy) #adjusted Tau p_c_star<-(Tau_star+1)/2 #adjusted p_c (maybe unnecessary?) a.post_star<-a.prior+nc_star #adjusted a' b.post_star<-b.prior+nd #b' is unchanged post.median_star<-qbeta(0.5, a.post_star, b.post_star) post.hdi_star.lower<-qbeta((1-hdi.width)/2, a.post_star, b.post_star) post.hdi_star.upper<-qbeta(1-(1-hdi.width)/2, a.post_star, b.post_star) list(tau=Tau, Tau_star=Tau_star, sample.p=p_c_star, post.median=post.median_star, post.hdi_star.lower=post.hdi.lower, post.hdi_star.upper=post.hdi.upper) }
Vec_to_table<-function(x, y, quantiles_x, quantiles_y){ x_cut<-cut(x, quantiles_x) y_cut<-cut(y, quantiles_y) return(table(x_cut, y_cut)) }
Table_to_vec<-function(table){ x<-rep(1:nrow(table), unname(rowSums(table))) y<-rep(as.vector(t(col(samp_table2))), as.vector(t(samp_table2))) list(x=x, y=y) }
x<-c(1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5) y<-c(1, 1, 4, 4, 5, 1, 2, 3, 5, 1, 2, 3, 3, 3, 3, 5, 2, 4, 4, 4, 5, 5, 3, 4, 4, 5, 5) Gamma_Concordance(x, y, quantiles_x=5, quantiles_y=5)
The input is $n$ and $t_+$.
#Wilcox_small<-function(n, tplus, intervals=200, samples=20000) intervals=200 samples=20000 n=20 tplus=151 fphi=seq(1, 200, 1) #for (i in 1:200){ # fphi[i]=0.0 #} fphi<-rep(0.0, intervals) for (j in 1:intervals){ phi=1/(2*intervals)+(j-1)*(1/intervals) for (k in 1:samples){ # tz=0.0 # for (L in 1:n){ # tz=tz+(L*rbinom(1, 1, phi)) # } tz=sum((1:n)*rbinom(n, 1, phi)) if(tz==tplus) { fphi[j]=fphi[j]+1.0 } else{ fphi[j]=fphi[j] } } } tot=sum(fphi) phipost=fphi/tot phiv=1/(2*intervals)+(j-1)*(1/intervals) phibar=sum(phiv*phipost) cphi=cumsum(phipost) prH1=1-cphi[round(intervals/2)]
## Example 7.1 (p. 342) Diet_A<-c(900, 1347, 1793, 2565, 2697, 3102, 3152, 3240, 3284, 3913) Diet_B<-c( 11, 25, 948, 1396, 1487, 1946, 2343, 2483, 3010, 3071)
## Example 7.2 (pp. 342-343) C_fibers<-c(1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.392, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585) E_fibers<-c(1.901, 2.213, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.224, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020)
# Function based on code from p. 346 Mann_Whitney_U_Stats<-function(E, C){ UE_vector<-rep(NA, length(E)) # UE counter UC_vector<-rep(NA, length(C)) # UC counter for (i in 1:length(E)){ UE_vector[i]<-sum(E[i]>C) } for (j in 1:length(C)){ UC_vector[j]<-sum(C[j]>E) } list(UE=sum(UE_vector), UC=sum(UC_vector)) }
This version takes as input $U_E$, $n_E$, $n_C$, the desired number of samples (default = 10000) and the desired number of intervals (default = 200).
#UE=21 #nE=5 #nC=5 mann_whitney_discrete_approx_1<-function(UE, nE, nC, n_samples = 10000, n_intervals = 200){ XE=seq(1, nE, 1) XC=seq(1, nC, 1) fomega<-rep(0.0, n_intervals) for (j in 1:n_intervals){ omega=0.5/n_intervals+(j-1)*(1/n_intervals) komega=(1-omega)/omega for (k in 1:n_samples){ Uz<-rep(NA, nE) XE<-rexp(nE, rate=komega) XC<-rexp(nC, rate = 1) for (i in 1:nE){ Uz[i]<-sum(XE[i]>XC) } if(sum(Uz) == UE) {fomega[j] = fomega[j]+1} else {} } } tot=sum(fomega) omegapost=fomega/tot omegav=seq(0.5/n_intervals, 1-(0.5/n_intervals), 1/n_intervals) omegabar=sum(omegapost*omegav) comega=cumsum(omegapost) prH1=1-comega[n_intervals/2] list(omegapost=omegapost, omegabar=omegabar, comega=comega, prH1=prH1) }
This version takes as input $E$, $C$, the desired number of samples (default = 10000) and the desired number of intervals (default = 200).
mann_whitney_discrete_approx_2<-function(E, C, n_samples=10000, n_intervals=200){ #Written to take in two vectors of observed data, default is 200 intervals UE_vector<-rep(NA, length(E)) # UE counter UC_vector<-rep(NA, length(C)) # UC counter for (i in 1:length(E)){ UE_vector[i]<-sum(E[i]>C) } for (j in 1:length(C)){ UC_vector[j]<-sum(C[j]>E) } UE=sum(UE_vector) UC=sum(UC_vector) nE<-length(E) nC<-length(C) XE=seq(1, length(E), 1) XC=seq(1, length(C), 1) fomega<-rep(0.0, n_intervals) for (j in 1:n_intervals){ omega=0.5/n_intervals+(j-1)*(1/n_intervals) komega=(1-omega)/omega for (k in 1:n_samples){ Uz<-rep(NA, length(E)) XE<-rexp(length(E), rate=komega) XC<-rexp(length(C), rate = 1) for (i in 1:length(E)){ Uz[i]<-sum(XE[i]>XC) } if(sum(Uz) == UE) {fomega[j] = fomega[j]+1} else {} } } tot=sum(fomega) omegapost=fomega/tot omegav=seq(0.5/n_intervals, 1-(0.5/n_intervals), 1/n_intervals) omegabar=sum(omegapost*omegav) comega=cumsum(omegapost) prH1=1-comega[n_intervals/2] list(omegapost=omegapost, omegabar=omegabar, comega=comega, prH1=prH1) }
This version takes as input $n_E$, $n_C$, and $U_E$.
#UE = 300 #nE = 20 #nC = 20 mann_whitney_lagrange_approx_1<-function(nE, nC, UE){ xs=UE/(nE*nC) if (xs >= 0.5){ x = xs } else { x = 1-xs } nH=(2*nE*nC)/(nE+nC) y5=(nH^1.1489)/(0.4792+nH^1.1489) w4=0.8-(1/(1+1.833*nH)) w3=0.6-(1/(1+2.111*nH)) w2=0.4-(1/(1+2.520*nH)) w1=0.2-(1/(1+4.813*nH)) y4=(y5*w4)+(1-w4)*0.5 y3=(y5*w3)+(1-w3)*0.5 y2=(y5*w2)+(1-w2)*0.5 y1=(y5*w1)+(1-w1)*0.5 Y=c(0.5, y1, y2, y3, y4, y5) La0=252-(1627*x)+(12500*x^2-15875*x^3+10000*x^4-2500*x^5)/3 La1=-1050+(42775*x/6-38075*0.5*x^2+75125*x^3-48750*x^4+12500*x^5)/3 La2=1800-12650*x+(104800*x^2-142250*x^3+95000*x^4-25000*x^5)/3 La3=-1575+11350*x+(-96575*x^2+134750*x^3+92500*x^4+25000*x^5)/3 La4=700+14900*x^2+15000*x^4-(15424*x+63875*x^3+12500*x^5)/4 La5=-126+1879*0.5*x+(-16625*0.5*x^2+12125*x^3-8750*x^4+2500*x^5)/3 LA<-c(La0, La1, La2, La3, La4, La5) ombar=sum(Y*LA) absum=nH*(1.028+0.75*x)+2 if (xs>=0.5){ a=ombar*absum b=(1-ombar)*absum omegabar=ombar } else { a=(1-ombar)*absum b=ombar*absum omegabar=1-ombar } na=a-1 nb=b-1 list(na=na, nb=nb, omegabar=omegabar) }
This version takes as input $E$ and $C$.
mann_whitney_lagrange_approx_2<-function(E, C){ UE_vector<-rep(NA, length(E)) # UE counter UC_vector<-rep(NA, length(C)) # UC counter for (i in 1:length(E)){ UE_vector[i]<-sum(E[i]>C) } for (j in 1:length(C)){ UC_vector[j]<-sum(C[j]>E) } UE=sum(UE_vector) UC=sum(UC_vector) nE<-length(E) nC<-length(C) xs=UE/(nE*nC) if (xs >= 0.5){ x = xs } else { x = 1-xs } nH=(2*nE*nC)/(nE+nC) y5=(nH^1.1489)/(0.4792+nH^1.1489) w4=0.8-(1/(1+1.833*nH)) w3=0.6-(1/(1+2.111*nH)) w2=0.4-(1/(1+2.520*nH)) w1=0.2-(1/(1+4.813*nH)) y4=(y5*w4)+(1-w4)*0.5 y3=(y5*w3)+(1-w3)*0.5 y2=(y5*w2)+(1-w2)*0.5 y1=(y5*w1)+(1-w1)*0.5 Y=c(0.5, y1, y2, y3, y4, y5) La0=252-(1627*x)+(12500*x^2-15875*x^3+10000*x^4-2500*x^5)/3 La1=-1050+(42775*x/6-38075*0.5*x^2+75125*x^3-48750*x^4+12500*x^5)/3 La2=1800-12650*x+(104800*x^2-142250*x^3+95000*x^4-25000*x^5)/3 La3=-1575+11350*x+(-96575*x^2+134750*x^3+92500*x^4+25000*x^5)/3 La4=700+14900*x^2+15000*x^4-(15424*x+63875*x^3+12500*x^5)/4 La5=-126+1879*0.5*x+(-16625*0.5*x^2+12125*x^3-8750*x^4+2500*x^5)/3 LA<-c(La0, La1, La2, La3, La4, La5) ombar=sum(Y*LA) absum=nH*(1.028+0.75*x)+2 if (xs>=0.5){ a=ombar*absum b=(1-ombar)*absum omegabar=ombar } else { a=(1-ombar)*absum b=ombar*absum omegabar=1-ombar } na=a-1 nb=b-1 list(na=na, nb=nb, omegabar=omegabar) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.