library(randomForest)
test_that("RandomSearchClassif is similar to MOCClassif", {
rf = randomForest(Species ~ ., data = iris)
predictor = iml::Predictor$new(rf, type = "prob")
set.seed(1234L)
rs_classif = RandomSearchClassif$new(predictor, n_generations = 30L, distance_function = "gower")
cfactuals = rs_classif$find_counterfactuals(
x_interest = iris[150L, ], desired_class = "versicolor", desired_prob = c(0.5, 1)
)
expect_data_table(cfactuals$data, max.rows = 30L*20L, ncols = 4L)
rs_classif$plot_search()
rs_classif$plot_statistics()
expect_data_table(rs_classif$optimizer$archive$data, nrows = 20L*30L)
expect_error(rs_classif$optimizer <- 35L, "read only")
expect_data_table(rs_classif$get_dominated_hv(), nrow = 30L)
})
test_that("gower or gower_c returns same result", {
rf = randomForest(Species ~ ., data = iris)
predictor = iml::Predictor$new(rf, type = "prob")
set.seed(1234L)
rs_classif = RandomSearchClassif$new(predictor, n_generations = 30L, distance_function = "gower")
cfactuals = rs_classif$find_counterfactuals(
x_interest = iris[150L, ], desired_class = "versicolor", desired_prob = c(0.5, 1)
)
cfd = cfactuals$data
set.seed(1234L)
rs_classif = RandomSearchClassif$new(predictor, n_generations = 30L, distance_function = "gower_c")
cfactuals = rs_classif$find_counterfactuals(
x_interest = iris[150L, ], desired_class = "versicolor", desired_prob = c(0.5, 1)
)
cfdc = cfactuals$data
expect_equal(cfd, cfdc)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.