# A function to pick scenarios for simulations
# Scenario kxxxy means we use "scenario k" with correlation xxx/100 and Kendall's tau 0.25 (y=1), 0.5 (y=2) or 0.75 (y=3)
# THE LATTER EXPLNATION NEED TO BE CORRECTED
# Scenarios 1xxxy-3xxxy for the nonparametric bounds.
# Scenarios 1xxxy for adjusted bounds and beta values
# Scenario 2xxxy and 3xxxy for null effect, but different strata proportions
#' @export
GetScenarioParams <- function(scenario.num)
{
if (floor(scenario.num/10000)==1)
{
base.weib.scale.a0.01 <- 12.5
base.weib.scale.a1.01 <- 10
base.weib.scale.a0.02 <- 25
base.weib.scale.a1.02 <- 17.5
base.weib.scale.a0.12 <- 25
base.weib.scale.a1.12 <- 20
base.weib.shape.a0.01 <- 2
base.weib.shape.a1.01 <- 3
base.weib.shape.a0.02 <- 2.25
base.weib.shape.a1.02 <- 1.5
base.weib.shape.a0.12 <- 1.5
base.weib.shape.a1.12 <- 2.5
beta.a0.01 <- log(c(0.25, 1))
beta.a0.02 <- log(c(1, 1))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 1))
beta.a1.02 <- log(c(1, 1))
beta.a1.12 <- log(c(1, 1))
k.tau <- (scenario.num %% 10) * 0.25
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 10
}
if (floor(scenario.num/10000)==2)
{
base.weib.scale.a0.01 <- 20
base.weib.scale.a1.01 <- 20
base.weib.scale.a0.02 <- 15
base.weib.scale.a1.02 <- 15
base.weib.scale.a0.12 <- 25
base.weib.scale.a1.12 <- 25
base.weib.shape.a0.01 <- 3
base.weib.shape.a1.01 <- 3
base.weib.shape.a0.02 <- 1.5
base.weib.shape.a1.02 <- 1.5
base.weib.shape.a0.12 <- 2.75
base.weib.shape.a1.12 <- 2.75
beta.a0.01 <- log(c(1, 1))
beta.a0.02 <- log(c(1, 1))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 1))
beta.a1.02 <- log(c(1, 1))
beta.a1.12 <- log(c(1, 1))
beta.a0.01 <- log(c(1, 1))
beta.a0.02 <- log(c(1, 1))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 1))
beta.a1.02 <- log(c(1, 1))
beta.a1.12 <- log(c(1, 1))
k.tau <- (scenario.num %% 10) * 0.25
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 20
}
if (floor(scenario.num/10000)==3)
{
base.weib.scale.a0.01 <- 7.5
base.weib.scale.a1.01 <- 7.5
base.weib.scale.a0.02 <- 15
base.weib.scale.a1.02 <- 15
base.weib.scale.a0.12 <- 20
base.weib.scale.a1.12 <- 20
base.weib.shape.a0.01 <- 2
base.weib.shape.a1.01 <- 2
base.weib.shape.a0.02 <- 1.75
base.weib.shape.a1.02 <- 1.75
base.weib.shape.a0.12 <- 2.5
base.weib.shape.a1.12 <- 2.5
beta.a0.01 <- log(c(1, 1))
beta.a0.02 <- log(c(1, 1))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 1))
beta.a1.02 <- log(c(1, 1))
beta.a1.12 <- log(c(1, 1))
k.tau <- (scenario.num %% 10) * 0.25
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 30
}
if (floor(scenario.num/10000)==4)
{
base.weib.scale.a0.01 <- 5
base.weib.scale.a1.01 <- 2.5
base.weib.scale.a0.02 <- 7.5
base.weib.scale.a1.02 <- 5
base.weib.scale.a0.12 <- 15
base.weib.scale.a1.12 <- 10
base.weib.shape.a0.01 <- 2.5
base.weib.shape.a1.01 <- 2.5
base.weib.shape.a0.02 <- 1.5
base.weib.shape.a1.02 <- 1.5
base.weib.shape.a0.12 <- 2.5
base.weib.shape.a1.12 <- 2.5
beta.a0.01 <- log(c(0.25, 1.5))
beta.a0.02 <- log(c(0.75, 1.5))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 1.5))
beta.a1.02 <- log(c(1, 2.5))
beta.a1.12 <- log(c(0.5, 2))
k.tau <- (scenario.num %% 10) * 0.25
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 40
}
if (floor(scenario.num/10000)==5)
{
base.weib.scale.a0.01 <- 4
base.weib.scale.a1.01 <- 2
base.weib.scale.a0.02 <- 5
base.weib.scale.a1.02 <- 3
base.weib.scale.a0.12 <- 15
base.weib.scale.a1.12 <- 10
base.weib.shape.a0.01 <- 2.5
base.weib.shape.a1.01 <- 2.5
base.weib.shape.a0.02 <- 2
base.weib.shape.a1.02 <- 2
base.weib.shape.a0.12 <- 2.5
base.weib.shape.a1.12 <- 2.5
beta.a0.01 <- log(c(0.25, 3))
beta.a0.02 <- log(c(0.75, 1.5))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 2))
beta.a1.02 <- log(c(0.75, 1.5))
beta.a1.12 <- log(c(0.5, 2))
k.tau <- ifelse((scenario.num %% 10)==1, 1/4, ifelse((scenario.num %% 10)==2, 1/3, 1/2))
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 50
}
if (floor(scenario.num/10000)==6)
{
base.weib.scale.a1.01 <- 4
base.weib.scale.a0.01 <- 2
base.weib.scale.a1.02 <- 5
base.weib.scale.a0.02 <- 3
base.weib.scale.a1.12 <- 15
base.weib.scale.a0.12 <- 10
base.weib.shape.a1.01 <- 2.5
base.weib.shape.a0.01 <- 2.5
base.weib.shape.a1.02 <- 2
base.weib.shape.a0.02 <- 2
base.weib.shape.a1.12 <- 2.5
base.weib.shape.a0.12 <- 2.5
beta.a1.01 <- log(c(1, 1))
beta.a1.02 <- log(c(1, 1))
beta.a1.12 <- log(c(1, 1))
beta.a0.01 <- log(c(1, 1))
beta.a0.02 <- log(c(1, 1))
beta.a0.12 <- log(c(1, 1))
k.tau <- ifelse((scenario.num %% 10)==1, 1/4, ifelse((scenario.num %% 10)==2, 1/3, 1/2))
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 60
}
if (floor(scenario.num/10000)==7)
{
base.weib.scale.a0.01 <- 4
base.weib.scale.a1.01 <- 2
base.weib.scale.a0.02 <- 5
base.weib.scale.a1.02 <- 3
base.weib.scale.a0.12 <- 15
base.weib.scale.a1.12 <- 10
base.weib.shape.a0.01 <- 2.5
base.weib.shape.a1.01 <- 2.5
base.weib.shape.a0.02 <- 2
base.weib.shape.a1.02 <- 2
base.weib.shape.a0.12 <- 2.5
base.weib.shape.a1.12 <- 2.5
beta.a0.01 <- log(c(1, 1))
beta.a0.02 <- log(c(1, 1))
beta.a0.12 <- log(c(1, 1))
beta.a1.01 <- log(c(1, 1))
beta.a1.02 <- log(c(1, 1))
beta.a1.12 <- log(c(1, 1))
k.tau <- ifelse((scenario.num %% 10)==1, 1/4, ifelse((scenario.num %% 10)==2, 1/3, 1/2))
theta <- 2*k.tau/(1 - k.tau)
rho <- round(scenario.num/10)/100 - 70
}
params <- mget(ls(environment()))
return(params)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.