fitting_prep_2 = function(Xdata,Ydata,initial_fit_parameters,program_parameters,created_baseline,max_shift,
min_shift,max_intensity,
min_intensity,max_width,min_width,spectrum_index,signal_index) {
Ydata[Ydata<0]=0
min_intensity[spectrum_index,signal_index][is.na(min_intensity[spectrum_index,signal_index])]=0
max_intensity[spectrum_index,signal_index][is.na(max_intensity[spectrum_index,signal_index])]=max(Ydata)
colnames(initial_fit_parameters) = c(
"quantification_or_not",
"positions",
"shift_tolerance",
"widths",
"multiplicities",
"Jcoupling",
"roof_effect"
)
signals_to_fit = length(initial_fit_parameters$positions)
ROIlength = length(Xdata)
#Calculation of number of background signals, if baseline fitting is performed
BGSigNum = ifelse(program_parameters$clean_fit == 'N', max(round(abs(Xdata[1] -
Xdata[ROIlength]) * program_parameters$BGdensity), 3), 0)
#Preallocation of parameters to optimize into a matrix of features
FeaturesMatrix = matrix(NA, (signals_to_fit + BGSigNum), 12)
colnames(FeaturesMatrix) = c(
'minimum_intensity',
'maximum_intensity',
'shift_left_limit',
'shift_right_limit',
'minimum_width',
'maximum_width',
'minimum_gaussian',
'maximum_gaussian',
'minimum_J_coupling',
'maximum_J_coupling',
'multiplicities',
'roof_effect'
)
#Parameters of signals to fit
FeaturesMatrix[1:signals_to_fit, 1] = min_intensity[spectrum_index,signal_index]
FeaturesMatrix[1:signals_to_fit, 2] = max_intensity[spectrum_index,signal_index]
FeaturesMatrix[1:signals_to_fit, 3] = min_shift[spectrum_index,signal_index]
FeaturesMatrix[1:signals_to_fit, 4] = max_shift[spectrum_index,signal_index]
FeaturesMatrix[1:signals_to_fit, 5] = min_width[spectrum_index,signal_index]
FeaturesMatrix[1:signals_to_fit, 6] = max_width[spectrum_index,signal_index]
FeaturesMatrix[1:signals_to_fit, 7] = 0
FeaturesMatrix[1:signals_to_fit, 8] = program_parameters$gaussian
FeaturesMatrix[1:signals_to_fit, 9] = initial_fit_parameters$Jcoupling -
program_parameters$j_coupling_variation
FeaturesMatrix[1:signals_to_fit, 10] = initial_fit_parameters$Jcoupling +
program_parameters$j_coupling_variation
FeaturesMatrix[1:signals_to_fit, 11] = initial_fit_parameters$multiplicities
FeaturesMatrix[1:signals_to_fit, 12] = initial_fit_parameters$roof_effect
FeaturesMatrix[initial_fit_parameters$multiplicities==1, 9:10] = 0
#Finding of maximum intensity and chemical shift tolerance of every background signal
if (BGSigNum>0) {
BGSigrightlimits = seq(Xdata[1]-0.005, Xdata[ROIlength]+0.005, length = BGSigNum) -
0.005
BGSigleftlimits = BGSigrightlimits + 0.01
peaks = peakdet(Ydata, program_parameters$peakdet_minimum*max(1e-10,max(Ydata)))
left = which(peaks$mintab$pos < ROIlength / 5)
right = which(peaks$mintab$pos > 4 * ROIlength / 5)
dummy = round(seq(1, ROIlength, length = 2 * BGSigNum - 1))
BGleftlimits = dummy[c(1, seq(2, length(dummy) - 1, 2))]
BGrightlimits = dummy[c(seq(2, length(dummy) - 1, 2), length(dummy))]
BGSig_maximums = replicate(BGSigNum, NA)
for (ss in 1:BGSigNum)
BGSig_maximums[ss] = min(Ydata[BGleftlimits[ss]:BGrightlimits[ss]])
BG_width=max(min(initial_fit_parameters$widths,na.rm=T)*program_parameters$BG_width_factor,program_parameters$BG_width)
#Parameters of background signals
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 1] = 0
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 2] = BGSig_maximums
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 3] = BGSigrightlimits
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 4] = BGSigleftlimits
# FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 5] = (1.5 /
# program_parameters$freq) * 10
# FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 6] = (1.5 /
# program_parameters$freq) * 15
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 5] = BG_width*(1-program_parameters$BG_width_tolerance)
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 6] = BG_width*(1+program_parameters$BG_width_tolerance)
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 7] = 0
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 8] = program_parameters$BG_gaussian_percentage
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 9] = 0
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 10] = 0 #j coupling makes no sense with backgorund signals
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 11] = 0 #arbitrary number used to signal later background signals
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix), 12] = 0
# optimization of baseline parameters , to be sure that the algorithm doesn ot try ti fot spurious signals as basleine
FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix),2] = fittingloop_bg(FeaturesMatrix[(signals_to_fit + 1):nrow(FeaturesMatrix),],
Xdata,
created_baseline,
program_parameters)$BG_intensities
}
return(FeaturesMatrix)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.