nmfLasso | R Documentation |
Perform the discovery of K somatic mutational signatures given a set of observed counts x.
nmfLasso(
x,
K,
beta = NULL,
background_signature = NULL,
normalize_counts = TRUE,
nmf_runs = 10,
lambda_rate_alpha = 0.05,
lambda_rate_beta = 0.05,
iterations = 30,
max_iterations_lasso = 10000,
seed = NULL,
verbose = TRUE
)
x |
count matrix for a set of n patients and 96 trinucleotides. |
K |
numeric value (minimum 2) indicating the number of signatures to be discovered. |
beta |
starting beta for the estimation. If it is NULL, starting beta is estimated by NMF. |
background_signature |
background signature to be used. If not provided, a warning is thrown and an initial value for it is estimated by NMF. If beta is not NULL, this parameter is ignored. |
normalize_counts |
if true, the input count matrix x is normalize such that the patients have the same number of mutation. |
nmf_runs |
number of iteration (minimum 1) of NMF to be performed for a robust estimation of starting beta. If beta is not NULL, this parameter is ignored. |
lambda_rate_alpha |
value of LASSO to be used for alpha between 0 and 1. This value should be greater than 0. 1 is the value of LASSO that would shrink all the exposure values to 0 within one step. The higher lambda_rate_alpha is, the sparser are the resulting exposure values, but too large values may result in a reduced fit of the observed counts. |
lambda_rate_beta |
value of LASSO to be used for beta between 0 and 1. This value should be greater than 0. 1 is the value of LASSO that would shrink all the signatures to 0 within one step. The higher lambda_rate_beta is, the sparser are the resulting signatures, but too large values may result in a reduced fit of the observed counts. |
iterations |
Number of iterations to be performed. Each iteration corresponds to a first step where beta is fitted and a second step where alpha is fitted. |
max_iterations_lasso |
Number of maximum iterations to be performed during the sparsification via Lasso. |
seed |
Seed for reproducibility. |
verbose |
boolean; Shall I print all messages? |
A list with the discovered signatures. It includes 6 elements: alpha: matrix of the discovered exposure values beta: matrix of the discovered signatures starting_alpha: initial alpha on which the method has been applied starting_beta: initial beta on which the method has been applied loglik_progression: log-likelihood values during the iterations. This values should be increasing, if not the selected value of lambda is too high best_loglik: log-likelihood of the best signatures configuration
data(patients)
data(starting_betas_example)
beta = starting_betas_example[["5_signatures","Value"]]
res = nmfLasso(x=patients[1:100,],
K=5,
beta=beta,
lambda_rate_alpha=0.05,
lambda_rate_beta=0.05,
iterations=5,
seed=12345)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.