Description Usage Arguments Examples
This function calculates the area under an ROC curve or the area under a precision-recall curve.
1 | calc_auc(x, y)
|
x |
the variable plotted on the x-axis of the curve plot, e.g. for a plot with an ROC curve, x-axis is the false positive rate |
y |
the varialbe plotted on the y-axis of the curve plot, e.g. for a plot with an ROC curve, y-axis is the true positive rate |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | library(tidyverse)
library(broom)
library(tidyroc)
# get `biopsy` dataset from `MASS`
data(biopsy, package = "MASS")
# change column names from `V1`, `V2`, etc. to informative variable names
colnames(biopsy) <-
c(
"ID",
"clump_thickness",
"uniform_cell_size",
"uniform_cell_shape",
"marg_adhesion",
"epithelial_cell_size",
"bare_nuclei",
"bland_chromatin",
"normal_nucleoli",
"mitoses",
"outcome"
)
# fit a logistic regression model to predict tumour type
glm(outcome ~ clump_thickness + uniform_cell_shape,
family = binomial,
data = biopsy
) %>%
augment() %>% # use broom to add glm output to the #' original data frame
make_roc(predictor = .fitted, known_class = outcome) %>% # get values to plot an ROC curve
summarise(auc = calc_auc(x = fpr, y = tpr)) # calculate the area under an ROC curve
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.