add.ci.est | R Documentation |
This function calculates confidence interval estimates for population mean, total or proportion from an object of class 'sample' or 'samples.population' and them it to the sample in columns named "ci.lower" and "ci.upper".
add.ci.est(dat,type="ybar",level=0.95)
dat |
Object of class 'sample' or 'samples.population'. |
level |
Confidence level; 0.95 (95%) by default. |
Returns an approximate confidence interval estimate of the appropriate type, assuming that the
statistic has a t-distribution with degrees of freedom equal to sample size. Elements "point.est"
and "var.est" are used to construct the confidence interval(s), so they must already be in 'dat'.
They can be added to 'dat' using add.point.est
and add.var.est
The function returns an object identical to 'dat' except that elements $ci.lower and $ci.upper, being the lower and upper (100*level) confidence interval bounds from the sample, have been added.
ci.est
, var.est
, add.var.est
,
point.est
, add.point.est
data(barnett) # get barnett data # All samples total weight of class from srs: samp.dbn<-take.sample(barnett,y.name="weight",n=23,take.all=TRUE) # estimate total samp.dbn<-add.point.est(samp.dbn,type="ybar.tot") samp.dbn<-add.var.est(samp.dbn,type="ybar.tot") samp.dbn<-add.ci.est(samp.dbn) # proportion of class with weight more than 15, from srs: samp.dbn<-take.sample(barnett,y.name="weight",n=23,take.all=TRUE) # estimate total samp.dbn<-add.point.est(samp.dbn,type="ybar.ppn",cond=">15") samp.dbn<-add.var.est(samp.dbn,type="ybar.ppn",cond=">15") samp.dbn<-add.ci.est(samp.dbn) # Stratified mean # Define 4 strata based on weight, with 10 lb interval widths: strat.barnett<-define.subunit(barnett,aux.name="weight",breaks=c(0,10,20,30,40),type="strat") # take stratified sample samp.dbn<-take.sample(strat.barnett,y.name="height",type="strat",n=c(2,9,7,3),take.all=TRUE) # estimate mean height using stratified estimator samp.dbn<-add.point.est(samp.dbn,type="strat.mean") samp.dbn<-add.var.est(samp.dbn,type="strat.mean") samp.ci<-add.var.est(samp.dbn) # Cluster mean # Define 5 clusters based on weight: clust.barnett<-define.subunit(barnett,aux.name="weight", breaks=c(0,10,15,20,25,30,40),type="clust") # take cluster sample of size 3 samp.dbn<-take.sample(clust.barnett,y.name="height",type="clust",m=3,take.all=TRUE) # estimate mean height using cluster estimator samp.dbn<-add.point.est(samp.dbn,type="clust.mean") samp.dbn<-add.var.est(samp.dbn,type="clust.mean") samp.dbn<-add.ci.est(samp.dbn) # Ratio estimator # take srs of size 6, with weight as auxiliary variable: samp.dbn<-take.sample(barnett,y.name="height",aux.name="weight",type="srs",n=23,take.all=TRUE) # estimate mean height using cluster estimator samp.dbn<-add.point.est(samp.dbn,type="ratio.mean") samp.dbn<-add.var.est(samp.dbn,type="ratio.mean") samp.dbn<-add.ci.est(samp.dbn)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.