View source: R/plot.finite.sample.dbn.r
plot.finite.sample.dbn | R Documentation |
This function generates a plot of the samples in an object of class 'samples.population'.
plot.finite.sample.dbn(dat,type="point.est",show.mean=TRUE,freq=TRUE,true.stat=NULL, ...) plot(dat,type="point.est",show.mean=TRUE,freq=TRUE,true.stat=NULL, ...)
dat |
Object of class 'samples.population'. |
type |
Type of statistic to plot. Valid types are
|
freq |
If TRUE, the histogram shows frequencies, else it shows density. |
show.mean |
If TRUE and type=="point.est" or type=="var.est", the mean of the sampling distribution is shown on the histogram. |
true.stat |
The value of the corresponding statistic in the population. Only used if type=="ci.est". |
... |
Other arguments to be passed to the function 'hist'. |
Plots point estimate, variance estimate or confidence interval estimates of an object of class 'samples.population'. Use to investigate properties of the sampling distribution of the point estimate, variance estimate or confidence interval estimate.
The function creates a plot.
plot.sample
data(barnett) # get barnett data # All samples total weight of class from srs: samp.dbn<-take.sample(barnett,y.name="weight",n=23,take.all=TRUE) # estimate total samp.dbn<-add.point.est(samp.dbn,type="ybar.tot") samp.dbn<-add.var.est(samp.dbn,type="ybar.tot") samp.dbn<-add.ci.est(samp.dbn) plot(samp.dbn) plot(samp.dbn,type="var.est") plot(samp.dbn,type="ci.est",true.stat=sum(barnett$weight)) # proportion of class with weight more than 15, from srs: samp.dbn<-take.sample(barnett,y.name="weight",n=23,take.all=TRUE) # estimate total samp.dbn<-add.point.est(samp.dbn,type="ybar.ppn",cond=">15") samp.dbn<-add.var.est(samp.dbn,type="ybar.ppn",cond=">15") samp.dbn<-add.ci.est(samp.dbn) plot(samp.dbn) plot(samp.dbn,type="var.est") plot(samp.dbn,type="ci.est",true.stat= (sum(barnett$weight>15)/length(barnett$weight))) # Stratified mean # Define 4 strata based on weight, with 10 lb interval widths: strat.barnett<-define.subunit(barnett,aux.name="weight", breaks=c(0,10,20,30,40),type="strat") # take stratified sample samp.dbn<-take.sample(strat.barnett,y.name="height",type="strat", n=c(2,9,7,3),take.all=TRUE) # estimate mean height using stratified estimator samp.dbn<-add.point.est(samp.dbn,type="strat.mean") samp.dbn<-add.var.est(samp.dbn,type="strat.mean") samp.dbn<-add.ci.est(samp.dbn) plot(samp.dbn) plot(samp.dbn,type="var.est") plot(samp.dbn,type="ci.est",true.stat=mean(barnett$height)) # Cluster mean # Define 5 clusters based on weight: clust.barnett<-define.subunit(barnett,aux.name="weight", breaks=c(0,10,15,20,25,30,40),type="clust") # take cluster sample of size 3 samp.dbn<-take.sample(clust.barnett,y.name="height",type="clust",m=3, take.all=TRUE) # estimate mean height using cluster estimator samp.dbn<-add.point.est(samp.dbn,type="clust.mean") samp.dbn<-add.var.est(samp.dbn,type="clust.mean") samp.dbn<-add.ci.est(samp.dbn) plot(samp.dbn) plot(samp.dbn,type="var.est") plot(samp.dbn,type="ci.est",true.stat=mean(barnett$height)) # Ratio estimator # take srs of size 6, with weight as auxiliary variable: samp.dbn<-take.sample(barnett,y.name="height",aux.name="weight",type="srs", n=23,take.all=TRUE) # estimate mean height using cluster estimator samp.dbn<-add.point.est(samp.dbn,type="ratio.mean") samp.dbn<-add.var.est(samp.dbn,type="ratio.mean") samp.dbn<-add.ci.est(samp.dbn) plot(samp.dbn) plot(samp.dbn,type="var.est") plot(samp.dbn,type="ci.est",true.stat=mean(barnett$height))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.