#' @title Simulate generalised inverse-Gaussian (GIG) random variables.
#'
#' @description A function to simulate random numbers
#' from GIG distribution -- GIG(p, a, b).
#' @param p A numeric vector for p parameters.
#' @param a A numeric vector for a parameters.
#' @param b A numeric vector for b parameters.
#' @param seed A numeric value for setting the seed of random number generation.
#' @details This function is a user-friendly wrapper that calls the \code{rGIG_cpp}
#' function. Probability density function of GIG(p, a, b) is given by
#' \deqn{f(x; p, a, b) = ((a/b)^(p/2))/(2K_p(sqrt(ab))) x^(p-1) exp(-(a/2)x - (b/2)/x),}
#' where \eqn{K_p} is modified Bessel function of the second kind of order p.
#' @return A list of outputs.
#' @examples
#' \dontrun{
#' rGIG(...)
#' }
#' @export
rGIG <- function (p, a, b, seed = 0)
{
if (length(a) != length(p))
stop("vector a does not have same length as vector p")
if (length(a) != length(b))
stop("vector a does not have same length as vector b")
if (min(a) < 0)
stop("vector a must be pos")
if (min(b) < 0)
stop("vector b must be pos")
return(rGIG_cpp(p, a, b, seed))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.