umapl.Seurat | R Documentation |
umap-learn (python implementation of umap)
## S3 method for class 'Seurat'
umapl(
object,
reduction = "pca",
reduction_name = "umap",
clustering = FALSE,
dims = NULL,
a = 1.662,
angular_rp_forest = FALSE,
b = 0.7905,
densmap = FALSE,
dens_frac = 0.3,
dens_var_shift = 0.1,
output_dens = FALSE,
disconnection_distance = NULL,
dens_lambda = 2,
force_approximation_algorithm = FALSE,
init = "spectral",
learning_rate = 1,
local_connectivity = 1,
low_memory = FALSE,
metric = "euclidean",
metric_kwds = NULL,
min_dist = 0.1,
n_components = 2,
n_epochs = 100,
n_neighbors = 50,
negative_sample_rate = 5,
output_metric = "euclidean",
output_metric_kwds = NULL,
random_state = 42,
repulsion_strength = 1,
set_op_mix_ratio = 1,
spread = 1,
target_metric = "categorical",
target_metric_kwds = NULL,
target_n_neighbors = -1,
target_weight = 0.5,
transform_queue_size = 4,
transform_seed = 42,
unique = FALSE,
verbose = TRUE,
nThreads = parallel::detectCores() - 1,
return_seurat = TRUE
)
return_seurat |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.