library(here)
library(magrittr)
library(tidyverse)
library(lubridate)
library(readxl)
import_hcw_pre <- function() {
hcw_pre_vac <- read.csv(here::here("inst", "extdata", "hcw_pre_vac.csv"))
hcw_pre_vac_clean <- hcw_pre_vac %>%
pivot_longer(!c(Participant.ID, comorbidites), names_to = "vac_yr", values_to = "response")
hcw_pre_vac_clean$comorbidites <- factor(hcw_pre_vac_clean$comorbidites, levels = c("None", "Yes"))
hcw_pre_vac_clean$vac_yr <- factor(hcw_pre_vac_clean$vac_yr,
levels = c("vacc2006", "vacc2007", "vacc2008", "vacc2009", "vacc2010", "vacc2011",
"vacc2012", "vacc2013", "vacc2014", "vacc2015"),
labels = c("2006", "2007", "2008", "2009", "2010", "2011",
"2012", "2013", "2014", "2015")
)
hcw_pre_vac_clean$response <- factor(hcw_pre_vac_clean$response,
levels = c("No", "Don't know", "Yes"))
hcw_pre_vac_data <- hcw_pre_vac_clean %>% dplyr::rename(pid = Participant.ID)
save(hcw_pre_vac_data, file = here::here("data", "hcw_pre", "vac_data.RDS"))
hcw_pre_data <- read.csv(here::here("inst", "extdata", "hcw_pre_data.csv"))
hcw_pre_part_data <- hcw_pre_data %>% select(pid = PID, yob = year_of_birth)
save(hcw_pre_part_data, file = here::here("data", "hcw_pre", "part_data.RDS"))
hcw_pre_sero_data <- hcw_pre_data %>% select(pid = PID, virus_id = virus, virus_name = Short_Name, virus_isol_date = IsolDate,
virus_isol_yr = Year, titre_pre_vac = L2preHI, titre_post_vac_1 = L2PostVHI, titre_post_vac_2 = L2PostSHI) %>%
pivot_longer(c(titre_pre_vac, titre_post_vac_1, titre_post_vac_2),
names_to = "sample_time", values_to = "titre_value") %>%
mutate(sample_time = case_when(
sample_time == "titre_pre_vac"~0,
sample_time == "titre_post_vac_1"~30,
sample_time == "titre_post_vac_2"~180))
hcw_pre_sero_data <- hcw_pre_sero_data %>% filter(pid != "RMH0096") # Remove this person as they have loads of missing data and it effects the WAIC
save(hcw_pre_sero_data, file = here::here("data", "hcw_pre", "sero_data.RDS"))
}
import_hanam <- function() {
hanam_data_raw <- read_excel(here::here("inst", "extdata", "hanam_data.xlsx"))
# get part info
hanam_part_data <- hanam_data_raw %>%
select(pid = Subject_ID, dob = DoBS, age = Age, gender = SexS) %>%
mutate(age = round(age, 0), dob = ymd(dob), yob = year(dob))
hanam_part_data$gender <- factor(hanam_part_data$gender, levels = c("Male", "Female"))
save(hanam_part_data, file = here::here("data", "hanam", "part_data.RDS"))
#
hanam_sero_data <- hanam_data_raw %>%
select(pid = Subject_ID, virus_id = virus, virus_name = Short_Name,
virus_isol_yr = Year, titre_value = L2titre, d4Diff, d7Diff, d14Diff, d21Diff, d280Diff) %>%
group_by(pid, virus_name) %>%
mutate(d0Diff = c(0, rep(NA, n() - 1)), .after = titre_value) %>%
pivot_longer(c(d0Diff, d4Diff, d7Diff, d14Diff, d21Diff, d280Diff), names_to = "sample_time", values_to = "not") %>%
na.omit %>%
mutate(sample_time = case_when(
sample_time == "d0Diff"~0,
sample_time == "d4Diff"~4,
sample_time == "d7Diff"~7,
sample_time == "d14Diff"~14,
sample_time == "d21Diff"~21,
sample_time == "d280Diff"~280)) %>%
select(!not) %>% select(pid, virus_id, virus_name, virus_isol_yr, sample_time, titre_value)
save(hanam_sero_data, file = here::here("data", "hanam", "sero_data.RDS"))
}
makeclass_hcwpre <- function() {
import_hcw_pre()
load(here::here("data", "hcw_pre", "part_data.RDS"))
load(here::here("data", "hcw_pre", "sero_data.RDS"))
load(here::here("data", "hcw_pre", "vac_data.RDS"))
hcwpre <- make_study("HCW_pilot",
"hcw_pre",
part_data = hcw_pre_part_data,
sero_data = hcw_pre_sero_data,
vac_data = hcw_pre_vac_data)
save(hcwpre, file = here::here("data", "hcwpre_data.RDS"))
}
makeclass_hanam <- function() {
import_hanam()
load(here::here("data", "hanam", "part_data.RDS"))
load(here::here("data", "hanam", "sero_data.RDS"))
hanam <- make_study("Ha Nam study",
"hanam",
part_data = hanam_part_data,
sero_data = hanam_sero_data)
save(hanam, file = here::here("data", "hanam_data.RDS"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.