#' Install R packages relevant for the book 'R for Non-Programmers: A Guide for Social Scientists'.
#'
#' @details Installs the following R packages at once:
##' \describe{
##' \item{broom: }{Turns output from functions into tibbles.}
##' \item{car: }{Interpret regression results}
##' \item{correlation: }{Lightweight package for computing different kinds of
##' correlations, such as partial correlations, Bayesian
##' correlations, multilevel correlations, polychoric correlations,
##' biweight correlations, distance correlations and more.}
##' \item{effectsize: }{Provide utilities to work with indices of effect size and
##' standardized parameters for a wide variety of models,
##' allowing computation of and conversion between indices such as Cohen's d,
##' r, odds, etc.}
##' \item{exact2x2: }{Provides a function to compute the exact McNemar Test.}
##' \item{ggdist: }{ggplot2 extension to plot uncertainty and frequencies.}
##' \item{ggforce: }{ggplot2 extension to plot even more geoms.}
##' \item{ggmosaic: }{Creates mosiac plots with ggplot2. Useful when visualising contingency tables}
##' \item{ggraph: }{Used to build network graphs}
##' \item{ggridges: }{ggplot2 extension to build ridge plots}
##' \item{janitor: }{The main janitor functions can: perfectly f
##' ormat data.frame column names; provide quick
##' counts of variable combinations (i.e., frequency
##' tables and crosstabs); and isolate duplicate records.}
##' \item{jtools: }{This is a collection of tools that the author (Jacob) has written for
##' the purpose of more efficiently understanding and sharing the results
##' of (primarily) regression analyses.}
##' \item{lavaan: }{Fit a variety of latent variable models, including confirmatory factor analysis,
##' structural equation modeling and latent growth curve models.}
##' \item{lubridate: }{Helps manipulate/convert date and time data}
##' \item{igraph: }{Used in combination with ggraph to create network plots}
##' \item{mice: }{Multiple imputation using Fully Conditional Specification (FCS)
##' implemented by the MICE algorithm as described in Van Buuren and
##' Groothuis-Oudshoorn (2011).}
##' \item{mi: }{Provides functions for data manipulation, imputing missing values
##' in an approximate Bayesian framework, diagnostics of the models used
##' to generate the imputations, etc.}
##' \item{modelr: }{Build pipefriendly operations to model data.}
##' \item{naniar: }{Provides data structures and functions that
##' facilitate the plotting of missing values and examination
##' of imputations.}
##' \item{parameters: }{Returns parameters from regression models.}
##' \item{patchwork: }{Combine different ggplots into one plot.}
##' \item{performance: }{Returns performance indices for regression models}
##' \item{psych: }{A general purpose toolbox for personality, psychometric theory
##' and experimental psychology.}
##' \item{pwr: }{Compute the statistical power of different analytical approaches}
##' \item{rcompanion: }{Additional functions, such as for effect sizes.}
##' \item{rstatix: }{A pipe-friendly way of computing various common statistics.}
##' \item{scales: }{Useful functions to format ggplot axes.}
##' \item{see: }{Enables visualising output from easystats packages.}
##' \item{simputation: }{Offer imputation methods for missing data.}
##' \item{skimr: }{A simple to use summary function that can be used with pipes
##' and displays nicely in the console.}
##' \item{tidyverse: }{Install the core tidyverse packages.}
##' \item{wesanderson: }{Colour palettes inspired by Wes Anderson movies for ggplot2}
##' \item{wordcloud: }{Generates word clouds from text data.}
##' }
#' @examples
#' \dontrun{
#' # Run this line of code to install all relevant packages
#' install_r4np()
#' }
#' @export
install_r4np <- function() {
utils::install.packages(c(
"broom",
"car",
"correlation",
"effectsize",
"exact2x2",
"ggdist",
"ggforce",
"ggmosaic",
"ggraph",
"ggridges",
"janitor",
"jtools",
"lavaan",
"lubridate",
"igraph",
"infer",
"mice",
"mi",
"modelr",
"naniar",
"parameters",
"patchwork",
"performance",
"psych",
"pwr",
"rcompanion",
"rstatix",
"scales",
"see",
"simputation",
"skimr",
"tidytext",
"tidyverse",
"wesanderson",
"wordcloud"), # Add packages related to mixed-methods research
repos = "https://cloud.r-project.org/", # Set CRAN mirror
dependencies = TRUE,
type = "both"
)
message("The following packages have been installed or updated:",
"\n- broom",
"\n- car",
"\n- correlation",
"\n- effectsize",
"\n- exact2x2",
"\n- ggdist",
"\n- ggforce",
"\n- ggmosaic",
"\n- ggraph",
"\n- ggridges",
"\n- janitor",
"\n- jtools",
"\n- lavaan",
"\n- lubridate",
"\n- igraph",
"\n- infer",
"\n- mice",
"\n- mi",
"\n- modelr",
"\n- naniar",
"\n- parameters",
"\n- patchwork",
"\n- performance",
"\n- psych",
"\n- pwr",
"\n- rcompanion",
"\n- rstatix",
"\n- scales",
"\n- see",
"\n- simputation",
"\n- skimr",
"\n- tidytext",
"\n- tidyverse",
"\n- wesanderson",
"\n- wordcloud",
sep = "\n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.