# Health Index England ----------------------------------------------------
# LOAD PACKAGES -----------------------------------------------------------
library(tidyverse)
# LOAD DATASET -----------------------------------------------------------
hie_raw <- read_csv("data-raw/health_index_england_raw_data.csv")
# CLEAN UP DATASET --------------------------------------------------------
## clean column names and removal of unnecessary variables
hie_clean_names <-
janitor::clean_names(hie_raw) |>
select(-numerator,
-denominator,
-area_code)
## Ad ID column
hie_clean_names_id <-
hie_clean_names |>
mutate(id = seq(1:nrow(hie_clean_names))) |>
select(id, everything())
## Check completness of data
hie_clean_names_id |> naniar::vis_miss(warn_large_data = FALSE)
## pivot-wider to turn indicators into column names
hie_pivoted <-
hie_clean_names_id |>
pivot_wider(id_cols = c(area_name, year),
names_from = indicator_name,
values_from = c(value)) |>
janitor:: clean_names()
glimpse(hie_pivoted)
naniar::vis_miss(hie_pivoted)
hie_pivoted |> colnames()
hie_pivoted |>
# select(life_satisfaction, happiness, life_expectancy) |>
filter(year == "2021") |>
correlation::correlation() |>
filter(r >= 0.3 | r <= -0.3)
# SELECT VARIABLES --------------------------------------------------------
hie_select <-
hie_pivoted |>
select(
area_name,
year,
activities_in_life_are_worthwhile,
early_years_development,
feelings_of_anxiety,
happiness, healthy_eating,
high_blood_pressure,
household_overcrowding,
life_expectancy,
life_satisfaction,
low_level_crime,
mental_health_conditions,
overweight_and_obesity_in_adults,
overweight_and_obesity_in_children,
physical_activity,
rough_sleeping,
smoking,
unemployment,
young_people_in_education_employment_and_apprenticeships
)
# ADDING A REGIONAL CATEGORISATION ----------------------------------------
## Create list of areas
hie_select |> count(area_name) |> print(n = Inf)
## I used ChatGPT to categorise data based on area_name
## Import region classification data
region <- read_csv("data-raw/hei_region.csv")
## Append region to
hie_select_region <-
left_join(hie_select, region, by = "area_name")
hie_select_region <-
hie_select_region |>
select(area_name, region, year, everything())
# CHANGE DATA TYPES -------------------------------------------------------
hie_select_region <-
hie_select_region |>
mutate(area_name = as_factor(area_name),
region = as_factor(region)
)
# RENAME LONG VARIABLE ----------------------------------------------------
hie_select_region <-
hie_select_region |>
rename(young_ppl_edu_empl_appren = young_people_in_education_employment_and_apprenticeships)
# FINAL DATASET -----------------------------------------------------------
hie <- hie_select_region
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.