Code
as.data.frame(modify_column_hide(tbl_diff, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 Marker Level (ng/mL) 0.20 -0.05, 0.44 0.12
2 Age -0.44 -4.6, 3.7 0.8
Code
as.data.frame(modify_column_hide(add_difference(tbl_summary(select(trial, trt,
response, grade), by = trt, percent = "row")), all_stat_cols()))
Condition
Warning:
The `add_difference()` results for categorical variables may not compatible with `tbl_summary(percent = c('cell', 'row'))`.
i Use column percentages instead, `tbl_summary(percent = 'column')`.
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 Tumor Response -4.2% -18%, 9.9% 0.6
2 Unknown <NA> <NA> <NA>
3 Grade 0.07 -0.20, 0.35 <NA>
4 I <NA> <NA> <NA>
5 II <NA> <NA> <NA>
6 III <NA> <NA> <NA>
Code
as.data.frame(modify_column_hide(tbl_test.args, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 var_t.test -0.44 -4.6, 3.7 0.8
2 var_t.test_dots -0.44 -4.6, 3.7 0.8
3 var_wilcox.test -1.0 -5.0, 4.0 0.7
4 var_wilcox.test_dots -1.0 -5.0, 4.0 0.7
5 var_prop.test -4.2% -18%, 9.9% 0.6
6 var_prop.test_dots -4.2% -16%, 100% 0.7
7 var_ancova -0.44 -4.6, 3.7 0.8
8 var_cohens_d -0.03 -0.32, 0.25 <NA>
9 var_hedges_g -0.03 -0.31, 0.25 <NA>
10 var_smd -0.03 -0.32, 0.25 <NA>
Code
as.data.frame(modify_column_hide(tbl_groups, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 age_ancova_lme4 -0.57 -4.0, 2.8 <NA>
2 age_paired_t_test -0.85 -4.4, 2.7 0.6
3 age_paired_cohens_d -0.05 -0.26, 0.16 <NA>
4 age_paired_hedges_g -0.05 -0.26, 0.16 <NA>
Code
tbl1
Output
# A tibble: 4 x 6
label stat_1 stat_2 estimate conf.low p.value
<chr> <chr> <chr> <chr> <chr> <chr>
1 Age 47 (15) 47 (14) -0.44 -4.6, 3.7 0.8
2 Marker Level (ng/mL) 1.02 (0.89) 0.82 (0.83) 0.20 -0.05, 0.44 0.12
3 Tumor Response 29% 34% -4.2% -18%, 9.9% 0.6
4 Patient Died 53% 59% -5.8% -21%, 9.0% 0.5
Code
as.data.frame(modify_column_hide(t1, all_stat_cols()))
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 mpg <NA> <NA> <NA>
2 hp <NA> <NA> <NA>
Code
tbl
Output
label stat_1 stat_2 estimate conf.low
1 Age 46 (37, 60) 48 (39, 56) -0.03 -0.32, 0.25
2 Tumor Response 28 (29%) 33 (34%) -0.09 -0.37, 0.19
3 Grade <NA> <NA> 0.07 -0.20, 0.35
4 I 35 (36%) 33 (32%) <NA> <NA>
5 II 32 (33%) 36 (35%) <NA> <NA>
6 III 31 (32%) 33 (32%) <NA> <NA>
Code
as.data.frame(modify_column_hide(res, all_stat_cols()))
Output
**Characteristic** **Adjusted Difference** **95% CI** **p-value**
1 Age -0.42 -4.5, 3.7 0.8
2 Tumor Response -4.7% -18%, 8.4% 0.5
Code
as.data.frame(modify_column_hide(add_difference(mutate(mtcars, .by = am, id = dplyr::row_number(),
am = factor(am, levels = c(0, 1))) %>% tbl_summary(by = am, include = mpg),
test = ~"paired.t.test", group = id), all_stat_cols()))
Message
The following warning was returned in `add_difference()` for variable "mpg"
! Some observations included in the stratified summary statistics were omitted from the comparison due to unbalanced missingness within group.
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 mpg -7.0 -10, -3.6 <0.001
Code
as.data.frame(modify_column_hide(add_difference(tbl_summary(mutate(mtcars, .by = am,
id = dplyr::row_number(), am = factor(am, levels = c(1, 0))), by = am,
include = mpg), test = ~"paired.t.test", group = id), all_stat_cols()))
Message
The following warning was returned in `add_difference()` for variable "mpg"
! Some observations included in the stratified summary statistics were omitted from the comparison due to unbalanced missingness within group.
Output
**Characteristic** **Difference** **95% CI** **p-value**
1 mpg 7.0 3.6, 10 <0.001
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.