Description Usage Arguments Details Value Examples
This function computes the SADF test statistic and the BADF sequence for a real time series data
1 |
y |
is a T x 1 numeric vector |
r0 |
is the minimum window size fraction |
lag |
is the number of lags in the ADF regression |
select |
is a character object choosing either a "Fixed" number of lags in the ADF regression or by using the the "BIC"/"AIC" criteria |
clust_number |
is the number of clusters for parallel computation |
This function computes the SADF test statistic and BADF sequence for a real time series data. The minimum window size fraction suggested by PSY(2015) is r0=0.01+1.8/sqrt(length(y))
results is a list containing the SADF test statistic and the BADF sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
#Replicate the empirical analysis in Table 8 by PSY(2015)
path.bit <- system.file("extdata", "SP_DV.csv", package = "bubble")
SP_DV <- read.table(path.bit, head = TRUE, sep = ";", fill=T, stringsAsFactors = FALSE)
SP_DV <- na.omit( SP_DV[,"PV.ratio", drop=F])
r0=0.01+1.8/sqrt(length(SP_DV[,1]))
sadf_test <-SADF_Y(SP_DV[,1], r0, 0 ,"Fixed",clust_number=8)
qe <-c(0.90,0.95,0.99) #quantiles
m <- 1000
T=length(SP_DV[,1])
cv_sadf<- CV_SADF(qe,m,T,r0, address, clust_number=7)
cat(sadf_test$sadf, cv_sadf, sep = "\t")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.