#' "run2D" MCMC sampling function for running MCMC sampler
#'
#' 2D landmark data(Gaussian likelihood with Isotropic Error Variance)
#' Accepts new parameter 5*1 point with probability alpha
#'
#' "c1","c2" = Location parameter
#' "b" = dilation parameter
#' "theta" =Rotation angle
#' "Sigma" = Isotropic error variation parameter
#'@param t An array containing 5*1 parameters
#' @param tune array containing 5*1 tuning value
#' @param myData 3D array containing 2 dimensional landmark
#'@param choice Which to compare with 1st object or mean obj
#'@param Nsample number of MCMC sample to generated
#'
#' @keywords run2D
#' @return Returns a large matrix containing the actual samples from posterior of 5*1 parameter point
#' @export
#' @examples
#' \dontrun{
#' require(shapes)
#' data(apes)
#'myData = apes$x
#' r=run2D(rnorm(5, mean=1, sd=1),rep(0.1,5),
#' myData, 10, 5000)
#'head(r); dim(r)
#'}
run2D <- function(t, tune, myData, choice, Nsample)
{
nsteps=Nsample
print(Nsample)
res <- matrix(NA, nsteps, length(t))
for (i in seq_len(nsteps)){
res[i,] <- t <- step2D(t,tune,myData, choice)
print(i)
if (i == nsteps) cat(': Done')
# else cat('\014')
}
drop(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.