#' Build the H-matrix from G-inverse-matrix and pedigree-full and pedigree-genotype, It calculate alpha and bera based the function of the matrix G_22 and A_22
#' @param M012 It is the matrix which has rownames(ID), the first column is SNP infor, the SNP is 012 format.
#' @param ped_full It contains the full pedigree, it has three columns:ID,Sire,Dam
#' @return The H-matrix form the formula
#' @examples
#' library(MASS)
#' animal <- 13:26
#' data.11.1 <- data.frame(animal,
#' sire = c(0,0,13,15,15,14,14,14,1,14,14,14,14,14),
#' dam = c(0,0,4,2,5,6,9,9,3,8,11,10,7,12),
#' mean = rep(1,length(animal)),
#' EDC = c(558,722,300,73,52,87,64,103,13,125,93,66,75,33),
#' fat_DYD = c(9.0,13.4,12.7,15.4,5.9,7.7,10.2,4.8,7.6,8.8,9.8,9.2,11.5,13.3),
#' SNP1 = c(2,1,1,0,0,1,0,0,2,0,0,1,0,1),
#' SNP2 = c(0,0,1,0,1,1,0,1,0,0,1,0,0,0),SNP3 = c(1,0,2,2,1,0,1,1,0,0,1,0,0,1),
#' SNP4 = c(1,0,1,1,2,1,1,0,0,1,0,0,1,1),
#' SNP5 = c(0,0,1,0,0,0,0,0,0,1,0,1,1,0),
#' SNP6 = c(0,2,0,1,0,2,2,1,1,2,1,1,2,2),
#' SNP7 = c(0,0,0,0,0,0,0,0,2,0,0,0,0,0),
#' SNP8 = c(2,2,2,2,2,2,2,2,2,2,2,2,2,1),
#' SNP9 = c(1,1,1,2,1,2,2,2,1,0,2,0,1,0),
#' SNP10 = c(2,0,2,1,2,1,0,0,2,0,1,0,0,0))
#' rm(list="animal")
#' animal <- 1:26
#' sire <- c(rep(0,12), data.11.1$sire)
#' dam <- c(rep(0,12), data.11.1$dam)
#' ped <- data.frame(animal, sire, dam)
#' rm(list=c("animal","dam","sire"))
#' M <- data.11.1[6:14, c(1, 7:16)]
#' rownames(M) <- M[, 1]
#' M1 <- as.matrix(M[, -1])
#' round(ginv(H_matrix(M1,ped)),2)
H_adjust_matrix <- function(M012,ped_full,alpha=0.95,beta=0.05){
library(MASS)
library(sommer)
library(nadiv)
A <- as.matrix(makeA(prepPed(ped_full)))
id <- row.names(A)
G <- A.mat(M012-1)
diag(G) <- diag(G) + 0.01
iG <- ginv(G)
rownames(iG) = colnames(iG) = genotyped
genotyped=rownames(G)
inpedigree=colnames(A)
nongenotyped=setdiff(inpedigree,genotyped)
cat("In pedigree nongenotyped length: ",length(nongenotyped),"\n")
genotypednotinpedigree=setdiff(genotyped,inpedigree)
cat("genotyped not in pedigree",length(genotypednotinpedigree),"\n")
genotypedinpedigree=intersect(genotyped,inpedigree)
cat("genotyped in pedigree",length(genotypedinpedigree),"\n")
G=G[genotypedinpedigree,genotypedinpedigree]
genotyped=genotypedinpedigree
Agg=matrix(NA,ncol(G),nrow(G))
genotyped <- as.character(genotyped)
Agg=A[genotyped,genotyped]
# Aggi <- ginv(Agg)
# Error in La.svd(x, nu, nv) : error code 1 from Lapack routine 'dgesdd'
Aggi <- solve(Agg)
meanG=mean(G)
meandiagG=mean(diag(G))
meanAgg=mean(Agg)
meandiagAgg=mean(diag(Agg))
cat("Means G is:",meanG,";Means G diag is:",meandiagG,";Means Agg is:",meanAgg,";Means diag Agg is:",meandiagAgg,"\n")
beta=(meandiagAgg-meanAgg)/(meandiagG-meanG)
alpha=meandiagAgg-meandiagG*beta
cat("alpha and beta value:",alpha,beta,"\n")
G=alpha+beta*G
Aggi=solve(Agg)
H=matrix(NA,ncol(A),nrow(A))
colnames(H)=colnames(A)
rownames(H)=rownames(A)
H[genotyped,genotyped]=G #H22
nongenotyped <- as.character(nongenotyped)
H[nongenotyped,genotyped]=A[nongenotyped,genotyped]%*%(Aggi%*%G) # H12
H[genotyped,nongenotyped]=t(H[nongenotyped,genotyped]) # H21
H[nongenotyped,nongenotyped]=A[nongenotyped,nongenotyped] +A[nongenotyped,genotyped]%*%(Aggi%*%(G-Agg)%*%Aggi)%*%A[genotyped,nongenotyped] # H11
cat("H diag means is :",mean(diag(H)),"H means is:",mean(H),"\n")
return(H)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.