Description Usage Arguments Author(s) References Examples
View source: R/extrapolation_analysis.R
Performs a complete evaluation of both univariate (Type I) and combinatorial (Type II) extrapolation in density surface models of line transect data, by calling relevant functions from dsmextra
. As such, arguments extrapolation_analysis
mirror those of the individual functions from which they are taken:
compare.arguments | Arguments from compare_covariates |
nearby.arguments | Arguments from compute_nearby |
map.arguments | Arguments from map_extrapolation |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | extrapolation_analysis(
samples,
covariate.names,
prediction.grid,
coordinate.system,
summarise.extrapolation = TRUE,
compare.covariates = FALSE,
compare.extrapolation.type = "both",
compare.n.covariates = NULL,
compare.create.plots = FALSE,
compare.display.percent = TRUE,
nearby.compute = TRUE,
nearby.nearby = 1,
nearby.max.size = 1e+07,
nearby.no.partitions = 10,
map.generate = TRUE,
map.sightings = NULL,
map.tracks = NULL
)
|
samples |
Sample (reference) dataset used for model building and calibration. This corresponds to the |
covariate.names |
Character string. Names of the covariates of interest. |
prediction.grid |
Prediction data.frame. This contains both geographic coordinates ( |
coordinate.system |
Projected coordinate system relevant to the study location. Can be either a character string or an object of class |
summarise.extrapolation |
Logical. If TRUE, prints a summary of extrapolation to the R console. |
compare.covariates |
Logical. If TRUE, run |
compare.extrapolation.type |
Character string indicating the type of extrapolation to be assessed. One of |
compare.n.covariates |
Integer. Maximum number of covariates. The function will compare all combinations of 1 to |
compare.create.plots |
Logical, defaults to |
compare.display.percent |
Logical, defaults to |
nearby.compute |
Logical. If TRUE, run |
nearby.nearby |
Scalar indicating which reference data points are considered to be 'nearby' (i.e. withing ‘nearby’ mean geometric Gower's distances of) prediction points. Defaults to 1. |
nearby.max.size |
Minimum size threshold for partitioning computations. Calculated as |
nearby.no.partitions |
Integer. Number of desired partitions of the data (default of 10). |
map.generate |
Logical. If TRUE, run |
map.sightings |
Species observations (optional). Can be supplied as a |
map.tracks |
Survey tracks (optional). Can be supplied as a |
Phil J. Bouchet
Bouchet PJ, Miller DL, Roberts JJ, Mannocci L, Harris CM and Thomas L (2019). From here and now to there and then: Practical recommendations for extrapolating cetacean density surface models to novel conditions. CREEM Technical Report 2019-01, 59 p. https://research-repository.st-andrews.ac.uk/handle/10023/18509
Mesgaran MB, Cousens RD, Webber BL (2014). Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity & Distributions, 20: 1147-1159. DOI: 10.1111/ddi.12209
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | library(dsmextra)
# Load the Mid-Atlantic sperm whale data (see ?spermwhales)
data(spermwhales)
# Extract the data
segs <- spermwhales$segs
predgrid <- spermwhales$predgrid
# Define relevant coordinate system
my_crs <- sp::CRS("+proj=aea +lat_1=38 +lat_2=30 +lat_0=34 +lon_0=-73 +x_0=0
+y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0")
# Define covariates of interest
my_cov <- c("Depth", "DistToCAS", "SST", "EKE", "NPP")
spermw.analysis <- extrapolation_analysis(samples = segs,
covariate.names = my_cov,
prediction.grid = predgrid,
coordinate.system = my_crs,
summarise.extrapolation = TRUE,
compare.covariates = TRUE,
compare.extrapolation.type = "both",
compare.n.covariates = NULL,
compare.create.plots = TRUE,
compare.display.percent = TRUE,
nearby.compute = TRUE,
nearby.nearby = 1,
nearby.max.size = 1e7,
nearby.no.partitions = 10,
map.generate = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.